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Abstract
Iterative estimation procedures that minimize empirical
risk based on general loss functions such as the Leven-
shtein distance have been derived as extensions of the Ex-
tended Baum Welch algorithm. While reducing expected
loss on training data is a desirable training criterion, these
algorithms can be difficult to apply. They are unlike MMI
estimation in that they require an explicit listing of the hy-
potheses to be considered and in complex problems such
lists tend to be prohibitively large. To overcome this dif-
ficulty, modeling techniques originally developed to im-
prove search efficiency in Minimum Bayes Risk decod-
ing can be used to transform these estimation algorithms
so that exact update, risk minimization procedures can
be used for complex recognition problems. Experimental
results in two large vocabulary speech recognition tasks
show improvements over conventionally trained MMIE
models.

1. Introduction

Discriminative estimation procedures such as MMI [1]
are powerful acoustic modeling techniques that, while
computationally expensive, are efficient enough to be
used for large vocabulary speech recognition. This ef-
ficiency derives from the existence of lattice-based es-
timation algorithms [2]. In practice, lattice-based algo-
rithms are necessary if a modeling approach that con-
siders multiple alternative hypotheses is to be applied to
large vocabulary speech recognition. However, there are
discriminative training procedures which, unlike MMI,
do not have readily derived lattice-based estimation pro-
cedures. In this paper we explore how a such discrimi-
native training algorithm intended to minimize an overall
risk criterion can be applied to large vocabulary speech
recognizer by using techniques originally developed to
improve Minimum Bayes Risk decoding [3, 4]. We will
show that merging the two techniques yields an efficient
and effective estimation procedure that can be used to ob-
tain additive performance improvements over MMI for
large vocabulary speech recognition.
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2. Risk-Based Discriminative Training

Risk based parameter estimation procedures attempt to
minimize the expected risk over a training set. Given
a transcribed acoustic training set (W̄ ,O) the estimation
objective is

argmin
θ

∑

W ′∈W

l(W̄ , W ′)P (W ′|O; θ). (1)

The goal is to minimize the empirical loss by reducing
the likelihood of any competing hypothesesW ′ that are
far from the truthW̄ under the loss function. Throughout
this paperl(W̄ , W ′) is the Levenshtein distance related
to Word Error Rate.

An iterative estimation procedure for minimizing this
objective function has been developed by Kaiseret al. [5].
They applied the Extended Baum Welch algorithm to ob-
tain a risk-minimizing variant of the MMI re-estimation
procedure for the parameters of state-dependent Gaussian
observation distributions [1]. The reestimation equations
for the Gaussian means and variances{µs, Σs} are

µ̄s =

∑
W ′∈W

K(W ′) ps(W
′) + Dsµs

∑
W ′∈W

K(W ′) γW ′

s + Ds

(2)

Σ̄s =

∑
W ′∈W

K(W ′) qs(W
′) + DsΣ̃s

∑
W ′∈W

K(W ′) γs(W ′) + Ds

− µ̄s
2, (3)

whereK(W ′) is defined as

[
∑

W ′′∈W

P (W ′′|O)l(W̄ , W ′′) − l(W̄ , W ′)] P (W ′|O) ,

Σ̃s = Σs + µsµs
T , and the usual HMM sufficient statis-

tics computed wrt each hypothesisW ′ are
γs(W

′) =
∑

τ γs(τ ; W ′), ps(W
′) =

∑
τ γs(τ ; W ′)oτ ,

andqs(W
′) =

∑
τ γs(τ ; W ′)o2

τ .
All quantities in the update relationships above are

dependent on the set of competing hypothesesW .
K(W ′) clearly depends onW , as does the posterior dis-
tribution over the competing hypotheses

P (W ′|O) =
P (O|W ′)P (W ′)∑

W ′′∈W

P (O|W ′′)P (W ′′)
. (4)
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2.1. Computational Issues
In large vocabulary speech recognition tasks,W is often
a lattice generated by the ASR decoder. Lattices are used
because the most likely hypotheses are so numerous that
listing them explicitly is impractical. However probabil-
ities such as Equation 4 can be found by summing over
lattice paths so that procedures such as lattice-based MMI
are feasible [2].

The minimum risk re-estimation procedure of Equa-
tions 2 and 3 are not as readily realized over lattices.
For instance, the quantityK(W ′,W) requires finding the
Levenshtein distance between the referenceW̄ and every
other pathW ′ in W . These distances are not as easily
computed as path likelihoods, since Levenshtein distance
between two strings does not distribute over lattice arcs in
the manner of path likelihoods. One possibility is simply
to expand first-pass ASR lattices into N-Best lists so that
the string-to-string comparisons can be carried out explic-
itly. These N-Best lists would have to be extremely deep
to contain a significant portion of the most likely hypothe-
ses, and the computation of loss over them would also be
costly. As an alternative, we investigate algorithms de-
veloped within MBR decoding to overcome similar diffi-
culties.

2.2. Computation of Risk for MBR Decoding
MBR decoders [4] find the sentence hypothesis with the
least expected error under a loss function as

Ŵ = argmin
W∈W

∑

W ′∈W

l(W, W ′)P (W ′|O).

Conceptually there are two distinct steps (although they
can be combined [4]). First, the risks are computed:

E(W ;W) =
∑

W ′∈W

l(W, W ′)P (W ′|O) ∀ W ∈ W

and then there is a search:Ŵ = argminW∈W E(W ;W).
Efficient algorithms have been developed to compute

the risk E(W ;W) of a hypothesisW under the Lev-
enshtein loss function [6]. We can thus find the dis-
criminative training objective function of Equation 1 as
E(W̄ ;W). The key is to findl(W̄ , W ′) for all W ′ in a
latticeW . This yields an (nearly) optimum alignment of
everyW ′ to W̄ called thelattice-to-string alignment.

This alignment makes it possible to segmentW into
a series of sublattices as outlined in Figure 1. We first
align each original lattice to the correct hypothesis to ob-
tain ‘pinched’ lattices. The pinched lattice is a sequence
of sublattices, each aligned to a single word in the refer-
ence transcription. These sublattices provide alternative
hypotheses to the reference words. We chose not keep
all these alternatives, and we discard many of the sublat-
tices by pruning them back to the truth (as described in
Sec. 3). The result is a greatly reduced hypothesis space
W̃ derived from the original latticeW .
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Figure 1: Lattice Segmentation for MBR Training.Top:
First-pass lattice of likely sentence hypotheses with cor-
rect path in bold;Middle: Alignment of lattice paths to
correct path;Bottom: Refined hypothesis spacẽW used
for Minimum Bayes Risk Discriminative Training.

Our original motivation was to speed up MBR search,
but this approach also allows us to redefine the string-to-
string loss withinW̃ . Suppose the reference strinḡW

hasN wordsW̄1 . . . W̄N . Another stringW ′ ∈ W̃ is not
allowed to be aligned arbitrarily tōW ; it must follow the
constraints ofW̃ . We call this theinduced loss function

lI(W̄ , W ′) =

N∑

i=1

l(W̄i, W
′
i )

whereW ′
i is the substring ofW ′ that aligns with theith

word of W̄ . lI(W̄ , W ′) is an easy to compute approxi-
mation tol(W̄ , W ′) ∀W ′ ∈ W .

In summary, lattice segmentation produces both a re-
duced hypothesis space as well as an induced loss func-
tion. We next discuss how to use these quantities to re-
duce the computational cost of discriminative training.

2.3. Pinched Lattice MBRDT
Our approach to large vocabulary minimum Bayes risk
discriminative training is simply to incorporate our
method of selecting hypothesis lists into the MBRDT es-
timation procedure of Kaiseret al. [5]. We call this pro-
cedure Pinched Lattice Minimum Bayes Risk Discrimi-
native Training (PLMBRDT).

If we restrict the hypothesis space to the pinched lat-
tice, the Minimum Bayes Risk Discriminative Training
objective under the induced loss function becomes

argmin
θ

∑

W ′∈W̃

N∑

i=1

l(W̄i, W
′
i )P (W ′|O; θ). (5)

In this way we can reduce the hypothesis space signifi-
cantly so that the original formulation by Kaiseret al. [5]
can be applied to large vocabulary ASR, albeit under an
approximate loss function.

Estimation is via Equations 2 and 3, withW re-
placed byW̃ , computingP (W ′|O) overW̃ , and taking
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K(W ′, W̃) as

[
∑

W ′′∈W̃

P (W ′′|O) lI(W̄ , W ′′)− lI(W̄ , W ′) ] P (W ′|O),

This calculation requires expanding the pinched lattices
into lists of hypotheses. However we have control over
the degree of lattice pinching and thus also over the
depths of the hypothesis lists.

2.4. ‘One-Worst’ PLMBRDT
We can obtain further computational savings by restrict-
ing the hypothesis space to only two hypotheses. We first
identify the ’worst’ hypothesis within the pinched lattice

W ∗ = argmax
W ′∈W̃

lI(W̄ , W ′).

We then restrictW to the truth and this one competi-
tor: W̃ = {W̄ , W ∗}. If W̄ has n segments, then
lI(W̄ , W ∗) = n, and Equation 5 simplifies to

argmin
θ

∑

W ′∈{W̄ ,W∗}

N∑

i=1

l(W̄i, W
′
i )P (W ′|O; θ)

which isargminθ n P (W ∗|O; θ). It follows that

KW̄ P (O|W̄ ) = P (W̄ |O)n P (W ∗|O)

KW∗ P (O|W ∗) = −P (W̄ |O)n P (W ∗|O)

andP (O) = P (O|W̄ )P (W̄ ) + P (O|W ∗)P (W ∗). The
update rule for̄µs becomes

P (W̄ |O)n P (W ∗|O) (ps(W̄ ) − ps(W
∗)) + Dsµs

P (W̄ |O)n P (W ∗|O) (γs(W̄ ) − γs(W ∗)) + Ds

.

A final, rather brutal, approximation is simply to ignore
the termsP (W̄ |O)nP (W ∗|O). This yields a simple
corrective training update procedure that we term ‘One-
Worst PLMBRDT’

µ̄s = ps(W̄ )−ps(W∗)+Dsµs

γs(W̄ )−γs(W∗)+Ds

Σ̄s = qs(W̄ )−qs(W∗)+DsΣ̃s

γs(W̄ )−γs(W∗)+Ds

− µ̄2
s.

What distinguishes this approach from other forms of
correct training is not the update procedure itself, but
rather the way in which the competing hypothesis is ob-
tained.

3. Experimental Procedures and Results

We will present results on two large vocabulary speech
recognition systems. The first system is trained and eval-
uated in the SWITCHBOARD conversational English
domain and the second system is trained and evaluated
in the MALACH spontaneous Czech domain [7]. Both

systems are speaker independent continuous mixture den-
sity, tied state, cross-word, gender-independent, using tri-
phone HMMs trained by HTK. The AT&T Large Vocab-
ulary Decoder was used to generate lattices over the train-
ing and test sets.

The SWITCHBOARD training set consisted of 16.4
hours of SWITCHBOARD-1 and 0.5 hour of CallHome
English data, with 22580 utterances in total. The speech
was parameterized into 39-dimensional, PLP cepstral co-
efficients, with delta and acceleration coefficients. The
SWITCHBOARD recognition tests were carried out on
a subset of the 2000 Hub-5 SWITCHBOARD-1 eval-
uation set (SWBD1) with 866 utterances and the 1998
Hub-5 SWITCHBOARD-2 evaluation set (SWBD2) with
913 utterances (approx. 2 hours of speech, total). The
MALACH Czech baseline acoustic models were built
from 40 hours of data with 24065 utterances. The speech
was parameterized into 39-dimensional, MFCC coeffi-
cients, with delta and acceleration coefficients. The test
set consisted of 954 utterances selected from held-out
speakers (approx. 2 hours of speech).

The SWITCHBOARD language model was a back-
off trigram with a 33K word vocabulary, while the
MALACH language model was a back-off bigram with
a 83K word vocabulary.

Lattice-based MMI [2] was performed in each do-
main. The SWITCHBOARD lattices were generated
once and the link posteriors were fixed for three iterations
of MMI. In MALACH, the link posteriors were reesti-
mated after each of six MMI iterations.

3.1. PLMBRDT Training Steps
The identification of binary word confusion pairs fol-
lowed the procedures developed for small vocabulary
tasks [8]. We first generate lattices over the acoustic train-
ing set using MMIE models. We then align the lattices to
the reference transcription under the Levenshtein distance
and then pinch them as depicted in Figure 1.

This produces a very large number of ‘confusable’
pairs and in these experiments we focused only on the
most frequently observed pairs. We identify those con-
fusion pairs that are observed more than 75 times in
the SWITCHBOARD training data and more than 100
times in MALACH. The less frequently occurring pairs
are discarded. As an example, suppose that the pair
{PHONE, PHOTO} was observed less than 75 times
in the pinched training set lattices. In each observed
instance, the link corresponding to the incorrect word
hypotheses (PHONE) would be discarded and only the
single link corresponding to the correct word (PHOTO)
would be retained. This reduces the number of differ-
ent types of binary confusions in SWITCHBOARD from
31467 to 159 and from 25847 to 117 in MALACH. This
corresponds to a rate of 0.3 and 0.17 confusion pair per
correct word in SWITCHBOARD and MALACH, resp;
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PLMBRDT OneWorst PLMBRDT
Iter SWBD1 SWBD2 SWBD1 SWBD2
1 39.6 49.7 39.6 49.7
2 39.5 49.4 39.2 49.4
3 39.4 49.7 39.8 49.8

Table 1: PLMBRDT Performance on SWITCHBOARD
(WER%). On the SWBD1/SWBD2 sets, the ML WER is
41.1% / 51.1% and the MMI WER is 39.9% / 49.7%.

i.e. in SWITCHBOARD, there is a binary confusion for
roughly every third word.

We observed that due to this agressive filtering, many
training set lattices are reduced to a single word sequence,
i.e. the reference transcription. These utterances do not
contribute to the overall training criterion and they are
therefore removed from the PLMBRDT training data.
The MALACH training set is reduced from 24,065 to
15,436 utterances, and the SWITCHBOARD training set
is reduced from 22,580 to 15,741 utterances. We found
that after filtering the average number of binary confu-
sion pairs in each pinched training set lattice is 2.1 in
SWITCHBOARD and 3.2 in MALACH. Hypothesis lists
are then generated from these pinched lattices, resulting
in an average transcription list depth of 13.1 in SWITCH-
BOARD and 36.5 in MALACH. The PLMBRDT calcula-
tions of Equations 2 and 3 are carried out over these lists
of hypotheses, and the hypothesis needed for the ‘One
Worst’ algorithm is also extracted from them. Both algo-
rithms are then be carried out as in Sections 2.3 and 2.4.

3.2. PLMBRDT Performance
The models trained by PLMBRDT and its ‘One Worst’
variant are used with the baseline language models to
rescore the test sets. Results are reported in Tables 1
and 2, the latter with MLLR adaptation. Since the
MALACH Czech ASR task is not widely studied, we also
report p-values (in parentheses) which give the probabil-
ity that there is no performance difference between each
system and the MMIE system. Even though PLMBRDT
attempts to correct a much smaller set of hypotheses than
MMI, both versions of PLMBRDT give improvements
relative to the lattice-MMIE baseline. The performance
of the OneWorst approach in particular suggests that,
even though sparse, the sets of competing hypotheses
identified by lattice pinching can be used for discrimi-
native training.

4. Conclusion

Lattice pinching techniques developed to find suitable
search spaces for Minimum Bayes Risk decoding can
also be used to generate competing hypotheses for dis-
criminative training. The induced loss function defines
a training objective under which an exact parameter up-
date procedure can be obtained. The result is an iterative
estimation procedure that minimizes an approximate loss
function and is efficient enough to be applied to discrim-

Iter PLMBRDT OneWorst PLMBRDT
1 41.4 (0.114) 41.3 (0.107)
2 41.3 (0.038) 41.2 (0.042)
3 41.3 (0.112) 41.0 (0.003)
4 41.3 (0.001) 41.1 (0.052)
5 41.1 (0.031) —
6 41.0 (0.013) —

Table 2: PLMBRDT Performance on MALACH
(WER%). The ML WER is 44.3% and the MMI WER
is 41.5%. p-values wrt the MMI baseline are in parens.

inative estimation of large vocabulary continuous speech
systems. The experiments reported here are conservative
and early explorations of possible modeling approaches.
Due to the the use of heavily pinched lattices and the cau-
tious selection of confusion sets, these experiments fo-
cused on a small collection of recognition errors. PLM-
BRDT nevertheless improves well trained MMI systems
and there is the expectation of further gains through more
aggressive modeling.
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