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Abstract

We describe the use of Support Vector Machines (SVMs) for continuous speech
recognition by incorporating them in Segmental Minimum Bayes Risk decoding.
Lattice cutting is used to convert the Automatic Speech Recognition search space
into sequences of smaller recognition problems. SVMs are then trained as discrimi-
native models over each of these problems and used in a rescoring framework. We
pose the estimation of a posterior distribution over hypotheses in these regions of
acoustic confusion as a logistic regression problem. We also show that GiniSVMs
can be used as an approximation technique to estimate the parameters of the lo-
gistic regression problem. On a small vocabulary recognition task we show that the
use of GiniSVMs can improve the performance of a well trained Hidden Markov
Model system trained under the Maximum Mutual Information criterion. We also
find that it is possible to derive reliable confidence scores over the GiniSVM hy-
potheses and that these can be used to good effect in hypothesis combination. We
discuss the problems that we expect to encounter in extending this approach to
large vocabulary continuous speech recognition and describe initial investigation of
constrained estimation techniques to derive feature spaces for SVMs.

Key words: Support Vector Machines, Segmental Minimum Bayes Risk decoding,
discriminative training, continuous speech recognition

Preprint submitted to Elsevier Science 10 July 2006



1 Introduction

In their basic formulation Support Vector Machines (SVMs) (Vapnik, 1995)
are binary classifiers of fixed dimension feature vectors. An SVM is defined by
a hyperplane in the feature space that serves as a decision boundary between
two classes. This hyperplane is usually determined by a small number of train-
ing samples located at the class boundary, so that SVMs generalize well from
limited training data. These data vectors can also be transformed into higher
dimensional feature spaces so that they can be more easily separated by a
linear classifier. These properties, together with an elegant and powerful for-
malism, have motivated the successful application of SVMs to many pattern
recognition problems (Burges, 1998).

The difficulties involved in applying SVMs to automatic speech recognition
(ASR) are apparent. Speaking rate fluctuations, pauses, disfluencies, and other
spontaneous speech effects prevent a simple mapping of the acoustic signal to
a fixed dimension representation. Moreover, the recognition decision space is
defined by the ASR task grammar, and in only the simplest of tasks is this a
binary decision. Even with techniques that extend SVMs to multiclass prob-
lems (Weston and Watkins, 1998), it is unlikely that a single classifier will be
powerful enough to distinguish all permissible sentences in a natural language
application. For SVMs to be employed in continuous ASR their formulation
as isolated-pattern classifiers of fixed dimension observations must be either
overcome, or the ASR problem itself must be redefined. In this work we take
the latter approach.

We transform the continuous speech recognition problem into sequential, inde-
pendent, classification tasks. Each of these sub-tasks is an isolated recognition
problem in which the objective is to decide which of several words or phrases
were spoken. Binary problems in this collection are extracted, and specialized
SVMs are trained and applied to each problem. In this way we transform the
continuous speech recognition problem into tasks suitable for SVMs.

We refer to this divide-and-conquer recognition strategy as acoustic code-
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breaking (Jelinek, 1996). The idea is first to perform an initial recognition
pass with the best system available, which we take as based on Hidden Markov
Models (HMMs); then to isolate and characterize regions of acoustic confusion
encountered in the first-pass; and finally to apply models that are specially
trained for these confusion problems. This provides a framework for using
models that might not otherwise be appropriate for continuous speech recog-
nition. It is also fundamentally an ASR rescoring approach. The goal is to
apply SVMs to resolve the uncertainty that remains after the first-pass of the
HMM-based recognizer.

We will build on prior work in the application of SVMs to continuous speech
recognition. Smith et al. (2001) have developed score-spaces (Jaakkola and
Haussler, 1998) to represent a variable length sequence of acoustic vectors via
fixed dimensional vectors. This is done by using HMMs to find the likelihood
of each sequence to be classified and then computing the gradient of the likeli-
hood function with respect to the HMM parameters. Since the HMMs have a
fixed number of parameters this yields a fixed dimension feature to which the
SVMs can be applied. Smith and Gales (2002) demonstrate that these score-
spaces can be used to obtain extra discriminatory information even though
the scores are generated by the HMMs themselves; thus the SVMs trained on
these score-spaces can improve upon the performance of the HMMs. However,
the SVM is still essentially an isolated pattern classifier, so that this approach
is still limited to the classification of variable length sequences as isolated
binary classes.

To extend SVMs to continuous speech recognition, we set as the SVM training
criterion the maximization of the posterior distribution over binary confusion
sets found in the training set; in other words, we construct the SVM to lower
the probability of error in training over continuous utterances. We will em-
ploy the GiniSVM (Chakrabartty and Cauwenberghs, 2002) which is an SVM
variant that can be directly constructed to provide a posterior distribution
over competing hypotheses with the goal of minimizing classification error.
We note that a crucial step in the code-breaking procedure is the extraction
of the training set used to train the SVMs, and we will show that some of the
performance improvement obtained by code-breaking is directly attributable
to this refinement of the training set.

In addition to selecting a hypothesis from each region of acoustic confusion,
we use the SVMs to provide a posterior distribution over all the hypotheses
in each confusion set. This will allow us to associate a measure of confidence
with each SVM hypothesis. This is a valuable modeling tool and it allows
us to perform hypothesis combinations (Fiscus, 1997) to produce results that
improve over those of the individual HMM and SVM systems themselves.

To place our work in context, there have been previous applications of SVMs
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to speech recognition and we review some of the relevant prior work. Ganap-
athiraju et al. (2003) obtain a fixed dimension classification problem by using
a heuristic method to normalize the durations of each variable length ut-
terance. The distances to the decision boundary in feature space are then
transformed into phone posteriors using sigmoidal non-linearities. Smith et al.
(2001) use score-spaces to train SVMs followed by a majority voting scheme
among binary SVMs to recognize isolated letters. Golowich and Sun (1998)
interpret multi-class SVM classifiers as an approximation to multiple logistic
smoothing spline regression and use the resulting SVMs to obtain state emis-
sion densities of HMMs. Forward Decoding Kernel Machines (Chakrabartty
and Cauwenberghs, 2002) perform maximum a posteriori forward sequence
decoding, where transition probabilities are regressed as a kernel expansion of
acoustic features and trained by maximizing a lower bound on a regularized
form of cross-entropy. Salomon et al. (2002) use a frame-by-frame classifica-
tion approach and explore the use of the Kernel Fisher Discriminant for the
application of SVMs for ASR.

In ASR, hypothesis combination is now well-established as a lattice analysis
and processing technique (Fiscus, 1997). Mangu et al. (2000) developed meth-
ods to transform lattices into confusion networks which can be analyzed and
rescored, for instance using rules based on word posteriors derived from the
lattices (Mangu and Padmanabhan, 2001). Our approach differs from previous
work in several respects. We use segment sets, an analogue of confusion net-
works, obtained by lattice-to-string alignment procedures (Goel et al., 2004;
Kumar and Byrne, 2002) designed to identify regions of confusion in the orig-
inal lattices while retaining the paths in the original lattice that form com-
plete word sequences. We also apply our models in a hypothesis combination
scheme, although we do so with models specially trained to resolve the confu-
sions identified in the lattices and do not restrict ourselves to statistics derived
from the underlying lattices. We observe in passing that since the first-pass
HMM system provides a proper posterior distribution over sequences, this ap-
proach may be less affected by the label-bias problem that can be encountered
when discriminative classifiers are applied in sequential classification (Lafferty
et al., 2001).

Acoustic code-breaking was developed by Venkataramani and Byrne (2003) for
small vocabulary tasks and subsequently applied to large vocabulary recog-
nition tasks (Venkataramani and Byrne, 2005). That work forms the Ph.D.
dissertation of Venkataramani (2005). Several other recent Ph.D. dissertations
contribute directly to the modeling approach presented here. Lattice segmen-
tation procedures described in the next section were developed by Kumar
(2004) and subsequently used by Doumpiotis (2005) to develop the novel dis-
criminative training procedures used in the baseline experiments of Section 6.
GiniSVMs were developed by Chakrabartty (2004) and the use of SVMs with
score-spaces derived from HMMs was studied originally by Smith (2003).
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The rest of the paper is organized as follows: we first give a brief introduc-
tion to ASR and formulate it as a sequential classification problem. Next we
discuss the application of SVMs for variable length observations and use the
GiniSVMs to approximate a posterior distribution over hypotheses via logis-
tic regression. We will then list the steps involved in implementing the new
framework; this framework is evaluated in the experiments section. Following
this we explore approaches to extend our work to large vocabulary tasks and
conclude with final remarks.

2 Continuous Speech Recognition as a Sequence of Independent

Classification Problems

The goal of a speech recognizer is to determine what word string W was
spoken given an input acoustic signal O. The acoustic signal is represented
as a T -length string of spectral measurements O = o1, o2, · · · , oT and W by a
string of N words given by W = w1, w2, · · · , wN .

In the usual manner, the hypothesis Ŵ is found by the maximum a posteriori

(MAP) recognizer as

Ŵ = argmax
W∈W

P (O|W )P (W ) (1)

where W represents the space of all possible word strings. To compute P (O|W ),
we employ an acoustic model, usually an HMM. An HMM is defined by a fi-
nite state space {1, 2, · · · , S}; an output space O, usually Rd; transition prob-
abilities between states P (st = s′|st−1 = s); and output distributions for
states P (o|s). For continuous output spaces, the output distribution of each
HMM state is modeled as a multiple Gaussian mixture model

P (ot = o|st = s) =
K
∑

j=1

wi,s,j

(2π)D/2|Σi,s,j|1/2
exp

{

(o − µi,s,j)
⊤Σ−1

i,s,j(o − µi,s,j)
}

(2)

where K is the number of Gaussian components, wi,s,j, µi,s,j and Σi,s,j are
the mixture weight, mean and co-variance matrix of the jth component of
the observation distribution of state s of the ith word. The language model
probability P (W ) appears in its usual role and assigns probability to word
sequences W = w1, . . . , wN .

In addition to producing the MAP hypothesis Ŵ , the speech recognizer can
also produce a set of likely hypotheses compactly represented by a lattice (see
Fig. 1, a). Each link in the lattice represents a word hypothesis. Associated
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Fig. 1. Lattices and their segmentation. a: First-pass lattice of likely sentence hy-
potheses with a reference path (in bold); b: Alignment of lattice paths to the ref-
erence path with link labels indicating a word hypothesis, an alignment index, an
edit operation and its cost; c: Alternate hypotheses for words in the reference hy-
potheses; d: Pruned segment sets; e: Search space consisting of binary segment sets
with word hypotheses tagged to indicate membership in specific segment sets.

with each link are also the start and end times of the word hypothesis and the
posterior probability of that word hypothesis relative to all the hypotheses in
the lattice (Wessel et al., 1998). The N most likely hypotheses can also be
generated from a lattice; such a list is called an N -best list.

2.1 The Sequential Problem Formulation

The MAP decoder as given in Eq. (1) assumes all word strings are of equal
importance. The Minimum Bayes Risk (MBR) decoder (Goel and Byrne, 2000,
2003) attempts to address this issue by associating an empirical risk E(W )
with each candidate hypothesis W . Given a loss function l(W, W ′) between
two word strings W and W ′, e.g. the string-edit distance, E(W ) can be found
as

E(W ) =
∑

W ′∈W

l(W, W ′)P (W ′|O). (3)
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The goal of the MBR decoder is then to find the hypothesis with the minimum
empirical risk as

Ŵ = argmin
W∈W

E(W ). (4)

It is not feasible to consider all possible hypotheses while computing E(W ). A
possible solution is to approximate W by an N -best list. However for coverage
and computational reasons we use lattices as our hypothesis space. Thus we
find

E(W ) =
∑

W ′∈L

l(W, W ′)P (W ′|O), (5)

where L is a lattice for the utterance under consideration.

Given a string W , computation of Eq. (5) requires the alignment of every path
in the lattice against W . Given the vast number of paths in a lattice, this can-
not be done by enumeration. However, we have an efficient algorithm (Kumar
and Byrne, 2002; Goel et al., 2004) that transforms the original lattice into a
form (Fig. 1, b) that contains the information needed to find the best align-
ment of every word string to the reference string W .

Using the alignment we can then transform the original lattice into a form in
which all paths in the lattice are represented as alternatives to the words in
the reference string W (Fig. 1, c). This alignment identifies high confidence
regions corresponding to the reference hypothesis as well as low confidence
regions within which the lattice contains many alternatives. At this point we
note that no paths have been removed; any path that was in the original
lattice remains in the aligned lattice. Therefore we can use these segmented
or pinched lattices for rescoring. This segmentation also leads to an induced

loss function LI between any two lattice paths, i.e. the alignment between the
strings is constrained by the pinched lattice (Goel et al., 2004).

The particular form of lattice cutting shown in Fig. 1, c is referred to as
period-1 lattice cutting (Goel et al., 2004); each word in the pinched lattice
appears as an alternative for a single word in the reference hypothesis. In this
cutting procedure we first discard alternatives that contain more than one
word in succession; this gives groups of single word hypothesis (Fig. 1, d). We
then apply likelihood-based pruning to reduce the number of alternatives to
produce pairs of confusable words (Fig. 1, e). Each of these remaining word
pairs is called a confusion pair.

Associated with each instance of these pairs in the lattices are the acoustic
segments that caused these confusions; these are the acoustic observations and
their start and end times. This pruning does reduce the search space; however
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alternatives to the reference hypothesis are available so that improvement is
still possible.

2.2 MBR over Segmented Lattices

Let the original lattice be segmented into N sub-lattices, W1,W2, · · · ,WN .
We can perform MBR decoding using the induced loss

Ŵ = argmin
W ′∈L

∑

W∈L

LI(W, W ′)P (W |O), (6)

which reduces (Goel et al., 2001; Goel and Byrne, 2003) to

Ŵi = argmin
W ′ǫWi

∑

WǫWi

l(W, W ′)Pi(W |O) (7)

where Ŵi is the minimum risk path in the ith sub-lattice and Wi represents
all possible strings in the ith sub-lattice. The sentence-level MBR hypothesis
is obtained as Ŵ = Ŵ1 · Ŵ2 · · · ŴM (Goel et al., 2004). Note that this for-
mulation allows for the use of specially trained probability models Pi(W |O)
for each sub-lattice Wi. We emphasize that while the hypothesis space L has
been segmented, the observed acoustics O remain unsegmented. In the case
of binary decision problems, each Wi that contains alternatives is reduced to
a confusion pair Gi = {w1, w2}, where the subscripts indicate their classes.
If l(·, ·) is taken to be the string-edit distance and δ(W, w) is the Kronecker
delta function, Eq. (7) reduces to

Ŵi =argmin
WǫGi

{Pi(w1|O)δ(W, w2), Pi(w2|O)δ(W, w1)} (8)

= argmax
WǫGi

Pi(W |O), (9)

i.e., the sub-lattice Wi specific decoder chooses the word with the higher
posterior probability. Note that in Eq. (8) the loss associated with a hypothesis
is the posterior probability of its alternative. As can be seen in Fig. 1, e it
often happens that in many cases the Wi contain only a single word. In these
cases the word from the reference string is selected as the segment hypothesis.

In summary, lattice cutting converts ASR into a sequence of smaller, indepen-
dent regions of acoustic confusion. Specialized decoders can then be trained
for these decision problems and their individual outputs can be concatenated
to obtain a new system output. We will next discuss Support Vector Machines
and a formulation which allows them to be applied in this way.
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3 Support Vector Machines for Variable Length Observations

We now briefly review the basic SVM (Vapnik, 1995). Let {xi}l
i=1 be the

training data and {yi}l
i=1 be the corresponding labels, where xi ∈ Rd and

yi ∈ {−1, +1}. Training an SVM involves maximizing a measure of the margin
between the two classes or, equivalently, minimizing the following cost function

1

2
‖φ‖2 − C

[

∑

i

1 − yi(φ · ζ(xi) + b)

]

+

(10)

where ‖φ‖−1 is the margin, C is the SVM trade-off parameter that deter-
mines how well the SVM fits the training data, ζ is the mapping from the
input space (Rd) to a higher dimensional feature space, b is the bias of the
hyperplane separating the two classes, and [·]+ gives the positive part of the
argument. This minimization is carried out using the technique of Lagrangian
multipliers (Boser et al., 1992) which results in minimizing

1

2

∑

i,j

αiK(xi,xj)αj −
∑

i

αi (11)

subject to

∑

i

yiαi = 0, and 0 ≤ αi ≤ C, (12)

where αi are the Lagrange multipliers and K(·, ·) is the kernel function that
computes an inner product in the higher dimensional feature space ζ(·) (Cortes
and Vapnik, 1995). New observations x are classified using the decision rule

ŷ = sgn

(

∑

i

yiαiK(x,xi) + b

)

. (13)

3.1 Feature Spaces

SVMs are static classifiers; a data sample to be classified must belong to the
input space (Rd). However, speech utterances vary in length. To be able to
use SVMs for speech recognition we need some method to transform variable
length sequences into vectors of fixed dimension. Towards this end we would
also like to use the HMMs that we have trained so that some of the advantages
of the generative models can be used along with the discriminatively trained
models.
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Fisher scores (Jaakkola and Haussler, 1998) have been suggested as a means
to map variable length observation sequences into fixed dimension vectors
and the use of Fisher scores has been investigated for ASR (Smith et al.,
2001). Each component of the Fisher score is defined as the sensitivity of the
likelihood of the observed sequence to each parameter of an HMM. Since the
HMMs have a fixed number of parameters, this yields a fixed dimension feature
even for variable length observations. Smith et al. (2001) have extended Fisher
scores to score-spaces in the case when there are two competing HMMs. This
formulation has the added benefit that the features provided to the SVM can
be derived from a well-trained HMM recognizer. For a complete treatment of
score-spaces, see the work of Smith and Gales (2002).

For discriminative binary classification problems the log likelihood-ratio score-
space has been found to perform best among a variety of possible score-spaces.
If we have two HMMs with parameters θ1 and θ2 and corresponding likelihoods
p1(O; θ1) and p2(O; θ2), the projection of an observation sequence (O) into the
log likelihood-ratio score-space is given by

ϕ(O; θ) =















ϕ0(O; θ)

ϕ1(O; θ1)

−ϕ2(O; θ2)















=















log p1(O;θ1)
p2(O;θ2)

∇θ1
log p1(O; θ1)

−∇θ2
log p2(O; θ2)















(14)

where θ = [θ1 θ2].

In our experiments we derive the score space solely from the means of the
multiple-mixture Gaussian HMM state observation distributions, denoted via
the shorthand θi[s, j, k] = µi,s,j[k], where k denotes a component of a vec-
tor; the omission of the Gaussian variance parameters will be discussed in
Section 6. We first define the parameters of the jth Gaussian observation dis-
tribution associated with state s in HMM i as (µi,s,j, Σi,s,j). The gradient with
respect to these parameters (Smith et al., 2001) is

∇µi,s,j
log pi(O; θi) =

T
∑

t=1

γi,s,j(t)
[

(ot − µi,s,j)
⊤Σ−1

i,s,j

]⊤

, (15)

where γi,s,j is the posterior for mixture component j, state s under the ith

HMM found via the forward-backward procedure; and T is the number of
frames in the observation sequence. As these scores are accumulated over the
individual observations, they must be normalized for the sequence length (T ).
We mention two such schemes in Section 4.1.
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3.2 Posterior Distributions Over Segment Sets by Logistic Regression

SMBR decoding over binary classes requires estimation of the posterior distri-
bution P (W |O) (Eq. (9)) over binary segment sets G = {w1, w2}. To interpret
the application of SVMs to classification within the segment sets, we will first
recast this posterior calculation as a problem in logistic regression. Our ap-
proach follows the general approach of Jaakkola and Haussler (1998).

If we have binary problems with HMMs as described in the previous section,
the posterior can be found by first computing the quantities p1(O; θ1) and
p2(O; θ2) so that

P (wj|O; θ) =
pj(O; θj)P (wj)

p1(O; θ1)P (w1) + p2(O; θ2)P (w2)
j = 1, 2 . (16)

This distribution over the binary hypotheses can be rewritten as

P (w|O; θ)=
1

1 + exp[k(w) log p1(O;θ1)
p2(O;θ2)

+ k(w) log P (w1)
P (w2)

]
(17)

where k(w) =











−1 w = w1

+1 w = w2

.

If a set of HMM parameters θ̄ is available, the posterior distribution can

be found by first evaluating the likelihood ratio log p1(O;θ̄1)
p2(O;θ̄2)

and inserting the

result into Eq. (17). If a new set of parameter values becomes available, the
same approach could be used to reestimate the posterior. Alternatively, the
likelihood ratio could be considered simply as a continuous function in θ whose
value could be found by a Taylor Series expansion around θ̄

log
p1(O; θ1)

p2(O; θ2)
= log

p1(O; θ̄1)

p2(O; θ̄2)
+ (θ − θ̄) ∇θ log

p1(O; θ̄1)

p2(O; θ̄2)
+ · · · (18)

which of course is only valid for θ ≈ θ̄.

If we ignore the higher order terms in this expansion and gather the statistics
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into a vector

Ψ(O; θ̄) =





















ϕ0(O; θ̄)

ϕ1(O; θ̄1)

−ϕ2(O; θ̄2)

1





















(19)

we obtain the following approximation for the posterior at θ

P (w|O; θ) ≈
1

1 + exp[ k(w) [1 (θ − θ̄) log P (w1)
P (w2)

] Ψ(O; θ̄) ]
. (20)

We will realize this quantity by the logistic regression function

Pa(w|O; φ) =
1

1 + exp[ k(w) φ⊤ Ψ(O; θ̄) ]
(21)

and Eq. (20) is realized exactly if we set

φ =





















φ0

φ1

φ2

φ3





















=





















1

θ1 − θ̄1

θ2 − θ̄2

log P (w1)
P (w2)





















. (22)

Our goal is to use estimation procedures developed for large margin classifiers
to estimate the parameters of Eq. (21) and in this we will allow φ to vary freely.
This has various implications for our modeling assumptions. If we allow φ3 to
vary, this is equivalent to computing Pa under a different prior distribution
than initially specified. If φ1 or φ2 vary, we allow the parameters of the HMMs
to vary from their nominal values θ̄1 and θ̄2. This might produce parameter
values that lead to invalid models, although we restrict ourselves here to the
means of the Gaussian observation distributions which can be varied freely.
Variations in φ0 are harder to interpret in terms of the original posterior
distribution derived from the HMMs; despite that, we still allow this parameter
to vary.
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3.3 GiniSVMs

Taking the form of Eq. (21), we assume that we have a labeled training set
{Ōj , w̄j}j and that we wish to refine the distribution Pa over the data accord-
ing to the following objective function

min
φ

1

2
‖φ‖2 − C

∑

j

log Pa(w̄
j|Ōj; φ) , (23)

where C is a trade-off parameter that determines how well Pa fits the training
data. The role of the regularization term ‖φ‖2 is to penalize HMM parameter
estimates that vary too far from their initial values θ̄. Similarly, it allows
reestimation of the prior over the hypotheses, but prefers estimates that assign
comparable likelihood to hypotheses, i.e. estimates for which P (w1) ≈ P (w2).
This could be easily modified to incorporate prior information about which
choice is more likely.

If we define a binary valued indicator function over the training data

yj =











+1 wj = w1

−1 wj = w2

we can use the approximation techniques of Chakrabartty and Cauwenberghs
(2002) to minimize Eq. (23) where the dual is given by

1

2

∑

i,j

αi [ K( Ψ(Oi; θ̄), Ψ(Oj ; θ̄) ) +
2γ

C
δij ] αj − 2γ

∑

i

αi (24)

subject to

∑

i

yiαi = 0, 0 ≤ αi ≤ C, (25)

where γ is the rate distortion factor chosen as 2 log 2 in the case of binary
classes and δij is the Kronecker delta function. The optimization can be carried
out using the GiniSVM Toolkit which is available online (Chakrabartty, 2003).

After the optimal parameters α are found, the posterior distribution of an
observation is found as

Pa(w|O; φ) =
1

1 + exp[ k(w) φ⊤ ζ(Ψ(O; θ̄))]
(26)
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=
1

1 + exp[ k(w)
∑

i y
i αi K( Ψ(Oi; θ̄), Ψ(O; θ̄) )]

, (27)

and φ can be written as φ =
∑

i αi yi ζ(Ψ(Oi; θ̄)).

Using GiniSVM in this way allows us to estimate the posterior distribution
under penalized likelihood criterion of Eq. (23). The distribution that results
can be used directly in the classification of new observations with the added
benefit that the form of the distribution in Eq. (27) makes it easy to assign
‘confidence scores’ to hypotheses. This will be useful in the weighted hypoth-
esis combination rescoring procedures that will be described subsequently.

We note in practice for purposes of classification, the score space requires some
form of normalization, the use of a non-linear kernel and the estimation of φ0;
the regression SVM will then not realize Eq. 21 exactly. Some of these modeling
issues are discussed in Sections 4 and 6. Therefore under certain conditions
the SVM regression can be viewed as posterior probability estimation under
the HMM likelihood model.

4 Modeling Issues

4.1 Estimation of sufficient statistics

We wish to apply SVMs to word hypotheses in continuous speech recognition
where the start and end times of word hypotheses are uncertain. One possi-
bility is to take the timing information from the first pass ASR output. An
alternative approach can be seen in the example in Fig. 1, e. Consider the
confusion pair A:17 vs. J:17. We can compute the statistics for this pair by
performing two forward-backward calculations with respect to the transcrip-
tions

SIL OH A:17 NINE A EIGHT B SIL

SIL OH J:17 NINE A EIGHT V SIL

where A:17 and J:17 are cloned versions of models A and J respectively.

When we perform forward-backward calculations over the entire utterance to
calculate statistics for a particular confusion pair, it is also possible to consider
alternative paths that arise due to other confusion segments. For instance,
for the confusion pair B:5 vs. V:5 in Fig. 1, e, considering the neighbouring
segments would imply gathering statistics over the following four hypotheses:
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SIL OH A NINE A EIGHT B:5 SIL

SIL OH A NINE A EIGHT V:5 SIL

SIL OH A NINE A A B:5 SIL

SIL OH A NINE A A V:5 SIL

We mention this scheme of using the alternatives in neighbouring segments as
an option; in our experiments we used the simpler case.

Either the Viterbi or the Baum-Welch algorithm can be used to compute
the mixture-level posteriors of Eq. (15). As discussed by Smith and Gales
(2002), these scores must be normalized to account for individual variations
in sequence length. If time segmentations of the utterance at the word level
are available, one possibility is simply to normalize each score by the length
of its word (T ). Alternatively, the sum of the state occupancy over the entire
utterance may be used, i.e.,

∑T
t=1 γs(t), where s is the state index.

4.2 Normalization

While a linear classifier can subsume a bias in the training, the parameter
search (αi in Eq. 24) can be made more effective by ensuring that the training
data is normalized. We first adjust the scores for each acoustic segment via
mean and variance normalization. The normalized scores are given by

ϕN(O) = Σ̂−1/2
sc [ϕ(O) − µ̂sc], (28)

where µ̂sc and Σ̂sc are estimates of the mean and variances of the scores as
computed over the training data of the SVM. Ideally, the SVM training will
incorporate the µ̂sc bias and the variance normalization would be performed
by the scaling matrix Σ̂sc as

ϕN(O) = Σ̂−1/2
sc ϕ(O) (29)

where Σ̂sc =
∫

ϕ(O)′ϕ(O)P (O|θ)dO. For implementation purposes, the scal-
ing matrix is approximated over the training data as

Σ̂sc =
1

M − 1

∑

(ϕ(O) − µ̂sc)
⊤(ϕ(O) − µ̂sc) (30)

where µ̂sc = 1
M

∑

ϕ(O), and M is the number of training samples for the SVM.
However we used a diagonal approximation for Σsc since the inversion of the
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full matrix Σ̂sc is problematic. Prior to the mean and variance normalization,
the scores for each segment are normalized by the segment length T .

4.3 Dimensionality Reduction

For efficiency and modeling robustness there may be value in reducing the
dimensionality of the score-space. There has been research (Blum and Langley,
1997; Smith and Gales, 2002) to estimate the information content of each
dimension so that non-informative dimensions can be discarded. Assuming
independence between dimensions, the goodness of a dimension can be found
based on Fisher discriminant scores as (Smith and Gales, 2002)

g[d] =
|µ̂sc[1][d] − µ̂sc[2][d]|

Σ̂sc[1][d] + Σ̂sc[2][d]
(31)

where µ̂sc[i](d) is the dth dimension of the mean of the scores of the training

data with label i and Σ̂sc[i][d] are the corresponding diagonal variances. SVMs
can then be trained only in the most informative dimensions by applying a
pruning threshold to g[d]. We note that the dimensionality of the feature space
is large enough that the computation of decorrelating transformations would
be numerically difficult. Dimensionality reduction by pruning is a practical
approach this modeling problem.

4.4 GiniSVM and its Kernels

GiniSVMs have the advantage that, unlike regular SVMs, they can employ
non positive-definite kernels. For ASR the linear kernel (K(xi,xj) = xi

′ · xj)
has previously been found to perform best among a variety of positive-definite
kernels (Smith and Gales, 2002). We found that while the linear kernel does
provide some discrimination, it was not sufficient for satisfactory performance.
This observation can be illustrated using kernel maps. A kernel map is a
matrix plot that displays kernel values between pairs of observations drawn
from two classes, G(1) and G(2). Ideally if x,y ∈ G(1) and z ∈ G(2), then
K(x,y) ≫ K(x, z). and the kernel map would be block diagonal. In Figs. 2
and 3, we draw 100 samples each from two classes to compare the linear
kernel map to the tanh kernel (K(xi,xj) = tanh(d ∗ xi

′ · xj)) map. Visual
inspection shows that the map of the tanh kernel is closer to block diagonal.
We have found in our experiments with GiniSVM that the tanh kernel far
outperformed the linear kernel; we therefore focus on tanh kernels for the rest
of the paper.
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We also found that the GiniSVM classification performance was sensitive to
the SVM trade-off parameter C; this is in contrast to earlier work on other
tasks (Smith et al., 2001). Unless mentioned otherwise, a value of C = 1.0 was
chosen for all the experiments in this paper to balance between over-fitting
and the time required for training.
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Fig. 2. Kernel Map K( Ψ(Oi; θ̄), Ψ(Oj; θ̄) ) for the linear kernel over two class data.
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Fig. 3. Kernel Map K( Ψ(Oi; θ̄), Ψ(Oj; θ̄) ) for tanh kernel over two class data.

5 The SMBR-SVM framework

We now describe the steps we performed to incorporate SVMs in the SMBR
framework.
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5.1 Identifying confidence sets in the training set

Initial lattices are generated using the baseline HMM system to decode the
speech in the training set. The paths in the lattices are then aligned against
the reference transcriptions (Goel et al., 2004). Period-1 lattice cutting is per-
formed and each sub-lattice is pruned (by the word posterior) to contain two
competing words. This process identifies regions of confusion in the training
set. The most frequently occurring confusion pairs (confusable words) are kept,
and their associated acoustic segments are identified, retaining time bound-
aries and the true identity of the word spoken.

5.2 Training SVMs for each confusion pair

For each acoustic segment in every sub-lattice, likelihood-ratio scores as given
by Eq. (14) are generated. The dimension of these scores is equal to the sum
of the number of parameters of the two competing HMMs plus one. If neces-
sary, the dimension of the score-space is reduced using the goodness criterion
(Eq. (31)) with appropriate thresholds. SVMs for each confusion pair are then
trained in our normalized score-space using the appropriate acoustic segments
identified as above.

5.3 SMBR decoding with SVMs

Initial test set lattices are generated using the baseline HMM system. The
MAP hypothesis is obtained from this decoding pass and the lattice is aligned
against it. Period-1 lattice pinching is performed on the test set lattices. In-
stances of confusion pairs for which SVMs were trained are identified and
retained; other confusion pairs are pruned back to the MAP word hypothesis.
The appropriate SVM is applied to the acoustic segment associated with each
confusion pair in the lattice. The HMM outputs in the regions of high confi-
dence are concatenated with the outputs of the SVMs (found by Eq. (27)) in
the regions of low confidence. This is the final hypothesis of the SMBR-SVM
system.

5.4 Posterior-based System Combination

We now have the HMM and the SMBR-SVM system hypotheses along with
their posterior estimates. If these posterior estimates serve as reliable confi-
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dence measures, we can combine the system hypotheses to yield better per-
formance. We use two simple schemes, either

p̂+(wi) =
ph(wi) + ps(wi)

2
, (32)

or

p̂×(wi) =
ph(wi)ps(wi)

ph(w1)ps(w1) + ph(w2)ps(w2)
. (33)

where ph(w1) and ph(w2) are the posterior estimates of the two competing
words in a segment as estimated by the HMM system and ps(w1) and ps(w2)
are those of the SMBR-SVM system. These schemes then pick the word with
the higher value. In our experiments, we used the p+ combination scheme. For
these simple binary problems, many voting procedures yield identical results
and the actual form is not crucial.

5.5 Rationale

The most ambitious formulation of acoustic code-breaking is first to identify
all acoustic confusion in the test set, and then return to the training set to
find any data that can be used to train models to remove the confusion. To
present these techniques and show that they can be effective, we have chosen
for simplicity to focus on modeling the most frequent errors found in training.
Earlier work (Doumpiotis et al., 2003a) has verified that training set errors
selected in this way are good predictors of the errors that will be encountered
in unseen test data.

6 Acoustic Code-Breaking with HMMs and SMBR SVMs

We evaluated this modeling approach on the OGI-Alphadigits corpus (Noel,
1997). This is a small vocabulary task that is fairly challenging. The base-
line Word Error Rates (WERs) for Maximum Likelihood (ML) models are
approximately 10%; at this error rate there are there are enough errors to
support detailed analysis. The task has a vocabulary of 36 words (26 letters
and 10 digits), and the corpus has 46,730 training and 3,112 test utterances.
We first describe the training procedure for the various baseline models; a
more detailed description can be found in Doumpiotis et al. (2003b).

Whole-word HMMs were trained for each of the 36 words. The models had
left-to-right topology with approximately 20 states each and 12 mixtures per
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state. The data were parametrized as 13 dimensional MFCC vectors with first
and second order differences. The baseline ML models were trained follow-
ing the HTK-book (Young et al., 2000). The AT&T decoder (Mohri et al.,
2001) was used to generate lattices on both the training and the test set.
Since the corpus has no language model (each utterance is a random six word
string), an unweighted free loop grammar was used during decoding. The ML
baseline WER was 10.73% (Table 1 System A). MMI training was then per-
formed (Normandin, 2002; Woodland and Povey, 2000) at the word level using
word time boundaries taken from the lattices. A new set of lattices for both
the training and the test sets was then generated using the MMI models. The
resulting WER was 9.07% (Table 1 System D) and the lattice oracle error
rate for these lattices was 1.70%. Period-1 lattice cutting was then performed
on these lattices, and the number of confusable words in each segment was
further restricted to two. This increased the lattice oracle error rate to 4.07%;
the number of hypothesized words in the lattices decreased from ∼768000 to
∼11500.

At this point there are two sets of confusion pairs from the pinched lattices:
one set comes from the training data, and the other from the test data. We
kept the 50 confusion pairs observed most frequently in the training data. All
other confusion pairs in training and test data were pruned back to the truth
and the MAP hypothesis respectively. We emphasize that this is a fair process;
the truth is not used in identifying confusion in the test data.

Doumpiotis et al. (2003b) have also found that performing further MMI train-
ing of the baseline MMI models on the pinched lattices yields additional im-
provements. The performance of this Pinched Lattice MMI (PLMMI) system
is listed in Table 1 as System E. We see a reduction in WER over the MMI
models from 9.07% to 7.98%.

6.1 The Role of Training Set Refinement in Code-Breaking

We have proposed a technique that first identifies errors, then selects training
data associated with each type of error, and finally applies models trained
to fix those errors. We will show that using SVMs in this way improves over
recognition with HMMs; however some of this improvement maybe due simply
to training on these selected subsets.

We investigated the effect of retraining on the confusable data in the training
set. Specifically, we performed supervised Baum-Welch re-estimation of the
whole-word HMMs over the time bounded segments of the training data asso-
ciated with all the error classes. The confusion sets and their time boundaries
from the ML system were available for both training and test data; therefore
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Table 1
HMM and SMBR-SVM System Performance. A: Baseline HMMs trained under
the ML criterion; B: System A HMMs with further Baum-Welch estimation per-
formed over confusable segments; C: HMMs from System A cloned and tagged as
in Fig. 1, e with Baum-Welch estimation performed over confusable segments; D:
System A HMMs refined by MMI; E: System B HMMs refined by MMI over pinched
lattices (PLMMI). Three different search procedures are evaluated: MAP (Eq. 1);
SMBR-SVM segment rescoring; and MAP and SMBR-SVM hypothesis combination
(‘Voting’). Performance is measured in Word Error Rate (%).

HMM Training Segmented Cloned Decoding Procedure

System Criterion Data HMMs MAP SMBR-SVM Voting

A ML N N 10.73 8.63 8.24

B ML Y N 10.00 - -

C ML Y Y 10.30 - -

D MMI N N 9.07 8.10 7.76

E PLMMI N N 7.98 8.13 7.16

these results are directly comparable to the ML baseline (Table 1, System A).
Simply by refining the training set in this way we found a reduction in WER
from 10.73% to 10.00% (Table 1, System B). We conclude that significant
gains can be obtained simply by retraining the ML system on the confusable
segments identified in the training set.

We next considered ML training of a set of HMMs for each of the error classes.
This is the most basic approach to Code-Breaking: we clone the ML-baseline
models and retrain them over the time-bounded segments of the training data
associated with each error class. Since there are 50 binary error classes, this
adds 100 tagged models to the baseline model set. The results of rescoring
with these models are given in Table 1, System C. We see a reduction in
WER from the 10.73% baseline to 10.30%, however these error-specific mod-
els do not perform as well as a single set of models trained over the refined
training set (10.00% WER). Given that the single set of models can be trained
to good effect, there is clearly a risk of data fragmentation in this type of train-
ing set refinement. Moreover, as the WER of the baseline system decreases,
the number of confusion sets naturally decreases, as well: there were ∼120000
confusion pairs identified in the training set by the MMI System D, and that
number drops to ∼80000 under the PLMMI System E. This effect has been
observed before and robust discriminative estimation techniques are available
to improve HMMs cloned in this way (Doumpiotis et al., 2003a,b). This ex-
periment demonstrates that effective use of refined training sets requires both
novel model architecture and novel estimation procedures.
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6.2 SMBR-SVM Systems

The GiniSVM Toolkit (Chakrabartty, 2003) was used to train SVMs for the
50 dominant confusion pairs extracted from the lattices generated by the MMI
system. The word time boundaries of the training samples were extracted from
the lattices. The statistics needed for the SVM computation were found using
the forward-backward procedure over these segments; in particular the mixture
posteriors of the HMM observation distributions were found in this way. Log-
likelihood ratio scores were generated from the 12 mixture MMI models and
normalized by the segment length as described in Section 4.1.

We initially investigated score spaces constructed from both Gaussian mean
and variance parameters. However training SVMs in this complete score space
is impractical since the dimension of the score space is prohibitively large;
the complete dimension is approximately 40,000. Filtering these dimensions
based on Eq. (31) made training feasible, however performance was not much
improved. One possible explanation is that there is significant dependence
between the model means and variances which violates the underlying as-
sumptions of the goodness criterion used in filtering. We then used only the
filtered mean sub-space scores for training SVMs (training on the unfiltered
mean sub-space remained impractical because of the prohibitively high num-
ber of dimensions). The best performing SVMs used around 2,000 of the most
informative dimensions, which was approximately 10% of the complete mean
space.

As shown in Table 1, applying SMBR-SVM yielded improvements relative to
MAP decoding for both the ML-trained system (System A) and the MMI-
trained system (System D). For System A, SMBR-SVM reduced the WER
from 10.73% to 8.63%, while for System D the reduction was from 9.07% to
8.10%. Building an SMBR-SVM from the MMI-trained system is a significant
improvement relative to the ML-trained system (8.63% vs. 8.10%). However,
in System E the SVM system does not yield improved performance relative
to the PLMMI HMM baseline and in fact performance degrades slightly when
used in straightforward SMBR-SVM decoding (8.13% vs. 7.98%).

6.3 Posterior-based system combination

In comparing the MMI and SMBR-SVM hypotheses to each other, we observed
that they differ by more than 4% in WER; this has been observed in some
but not all previous work (Fine et al., 2001; Golowich and Sun, 1998; Smith
et al., 2001). This suggests that hypothesis selection can produce an output
better than each of the individual outputs. Ideally the voting schemes will be
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based on posterior estimates provided by each system. Transforming HMM
acoustic likelihoods into posteriors is well established (Wessel et al., 1998). In
various experiments not reported here, the quality of the posteriors under the
SMBR-SVM system was found to be comparable to that of the HMM system
as measured by Normalized Cross-Entropy (Fiscus, 1997).

The recognition performance of hypothesis combination schemes (Section 5.4)
using the SMBR-SVM posterior and the HMM-based posterior are presented
in the ‘Voting’ column of Table 1. In all systems the Voting procedure gives
substantial improvement relative to the MAP and to the SMBR-SVM perfor-
mance alone. Notably in System E, Voting between the PLMMI system and
the SVM system reduces the MAP hypothesis WER from 7.98% to 7.16% even
though the SMBR-SVM result alone was slightly worse than the MAP result.
The code-breaking modeling procedure clearly produces complimentary sys-
tems suitable for hypothesis combination. It is also interesting to note that
both the sum and the product voting schemes yielded the same output even
to the level of individual word hypotheses.

6.4 PLMMI SMBR-SVM Tuning

All SMBR-SVM experiments reported thus far employ a fixed global trade-
off parameter value for the SVMs trained for the confusion pairs. This is a
fair baseline for developing novel techniques, but may not be optimal since
the confusion sets will vary in difficulty, number of samples, and other factors
which might affect the optimal value of C. Therefore the effect of the SVM
trade-off parameter (C in Eq. (25)) on a SMBR-SVM system was studied.
The specific system studied was a PLMMI SMBR-SVM system (Venkatara-
mani and Byrne, 2003) that used word time boundaries from MMI lattices.
Note that while this is a different system from Table 1, System E, the perfor-
mance of the PLMMI HMM baseline (7.98% WER) remains unchanged. WER
results from training the SVMs for the confusion pairs at different values of
C are presented in Fig. 3. We find some sensitivity to C, however optimal
performance was found over a fairly broad range of values (0.3 to 1.0).

We also investigated tuning of individual trade-off parameter values for each
SVM with results presented in Table 3. The oracle result is obtained by ‘cheat-
ing’ through choosing the parameter for each SVM that yielded the lowest class
error rate. Choosing C by this oracle reduced the WER from 8.01% to 7.77%
suggesting that variations in the trade-off parameter are worth exploring. A
fair systematic rule for choosing the parameter based on the number of train-
ing examples is presented in Table 2. By following this rule we almost matched
the oracle performance (7.88% vs. 7.77%). We note also that this unsupervised
tuning procedure matches the best PLMMI HMM system of 7.98% (Table 1
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Fig. 4. PLMMI SMBR-SVM performance as a function of the SVM trade-off pa-
rameter C.

Table 2
Piecewise Rule for choosing the trade-off parameter (C) through the number of
training observations (N).

N N > 10,000 N < 10,000 N < 5,000 N < 500

N > 5,000 N > 500

C 0.33 0.75 1.0 2.0

Table 3
PLMMI SMBR-SVM performance with tuning of the SVM trade-off parameter C.

SMBR-SVM

C = 1 8.01

Oracle C 7.77

Piecewise C 7.88

System E). Although C was originally introduced to control the sensitivity of
the model to the data, we believe there are other factors, such as task com-
plexity or redundancy in the training material, that explain why the mapping
given in Table 2 is effective for this task. For instance, an SVM training set
containing many HMM score samples with consistent discriminatory informa-
tion would require a lowering of the value of C in Equation 23; the kernel map
of Fig. 3 suggests that such behavior may indeed be a factor.

7 SVM Score-Spaces Through Constrained Parameter Estimation

We have studied a simple ASR task so that we could develop the SMBR-SVM
modeling framework and describe it without complication. Our ultimate goal
is to apply this framework to large vocabulary speech recognition systems
which are usually built on sub-word acoustic models shared across words.
Large vocabulary systems typically consist of sub-word models that are shared
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across words. We could apply the approach we have described thus far in a
brute force manner by cloning the models in a large vocabulary HMM system,
and retraining them over confusion sets, and deriving SVM statistics from the
models and the confusion sets.

Apart from the unwieldy size of a cloned system, the main problem would be
data sparsity in calculating statistics for SVM training. This observation sug-
gests the use of models obtained via constrained estimation. We can use linear
transforms (LTs) such as Maximum Likelihood Linear Regression (MLLR) (Leg-
etter and Woodland, 1995) to estimate model parameters. Following the ap-
proach we have developed, these transforms are estimated over segments in
the acoustic training set that were confused by the baseline system. We em-
phasize that these LTs are not used as a method of adaptation to test set
data.

Consider the case of distinguishing between two words w1 and w2 in a large
vocabulary system. We need to construct word models θ1 and θ2 from sub-
word acoustic models and we will use the two word models to find the statistics
needed to train an SVM. We identify all instances of this confusion pair in the
training set and use this data to estimate two transforms L1 and L2 relative
to the baseline HMM system. These are trained via supervised adaptation,
e.g. by MLLR over the refined training set. One approach to deriving an LT
score-space is to rely directly on the parameters of the transform

ϕ(O) =
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∇L1

∇L2















log

(

p1(O|L1 · θ1)

p2(O|L2 · θ2)

)

. (34)

However in experiments not reported here the score-space of Eq. (34) proved
unsuitable for classification. When we inspected the kernel maps, we saw no
evidence of the block diagonal structure characteristic of features useful for
pattern classification. Since the linear transforms only provide a direction in
the HMM parameter manifold, it is possible that they do not provide enough
information for the SMBR-SVM system to build effective decision boundaries
in the LT score-space.

An alternative is to create a constrained score-space by applying MLLR trans-
forms to a set of original models to derive a new set of models. The score-space
is the original mean score-space but is derived from the adapted HMMs. If
θ′1 = L1 · θ1 and θ′2 = L2 · θ2 the constrained score space is
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p2(O|θ′2)
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. (35)
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Table 4
HMM and SMBR-SVM System Performance. SMBR-SVM systems were trained in
the score-space of the transformed models

HMM Training Decoding Procedure

System Criterion MAP SMBR-SVM

D MMI 9.07 8.10

F MMI+MLLR 9.35 8.00

Although intended for large vocabulary recognition tasks, we investigated the
feasibility of the approach in our small vocabulary experiments. The results
are tabulated in Table 4. We estimated MLLR transforms with respect to the
MMI models over the confusion sets. A single transform was estimated for
each word hypothesis in each confidence set. We then applied the transforms
to the MMI models to estimate statistics as described in Eq. (35). The perfor-
mance is shown in Table 4, System F. We see a reduction in WER with respect
to the MMI baseline from 9.07% to 8.00%. In comparing this result to that
of the SVMs derived from the MMI models (8.00% vs. 8.10%), we conclude
that this severely constrained estimation is able to generate score-spaces that
perform similarly to those score spaces derived by unconstrained estimation.
For completeness, we rescored the confusions sets using the ML-transformed
MMI models. As can be expected performance degrades slightly from 9.07%
to 9.35%, suggesting that performing ML estimation subsequent to MMI es-
timation undoes the effects of discriminative training, as has been previously
reported (Normandin, 1995).

8 Conclusions

We have developed a Code-Breaking framework that applies Support Vector
Machines in continuous speech recognition. We use available baseline HMM
models for the identification of confusable regions, train error specific SVMs,
and attempt to resolve the remaining confusion in the test data using the error
specific models.

Our framework uses lattice cutting techniques to convert the continuous ASR
problem into a sequence of independent but coupled classification problems.
We used the previously proposed technique of score-spaces to convert the
variable length acoustic sequences associated with the problems into fixed
dimensional vectors which can then be classified by SVMs.

We posed the estimation of a posterior distribution over hypothesis in the
confusable regions as a logistic regression problem. We showed that GiniSVMs
can be used as an approximation technique to estimate the parameters of the
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logistic regression problem. We also found significant improvements by using
tanh kernels over other kernels that have been studied for ASR. We conjecture
that this is due to the ability of GiniSVMs to incorporate non-positive-definite
kernels in its training.

We investigated several methods to compute the sufficient statistics required
to generate scores. While the approaches performed similarly on the problems
we study, we noted different implementation aspects of their implementation
that may make them more appropriate choices for large vocabulary recog-
nition tasks. We see considerable improvement in the performance of SVMs
through selection of the most informative score-space dimensions, as has been
noted (Smith and Gales, 2002). We suspect this to be an artifact of the approx-
imation to the scaling matrix. If improved normalization of the score-space is
found either through better numerical methods or an improved modeling for-
mulation, the SMBR-SVM formulation should be expected to yield further
improvements.

We find that confidence measures over hypotheses can be robustly produced
by GiniSVMs. This allows for hypothesis selection from the baseline and the
SVM system using a weighted voting scheme. We further found that SMBR-
SVM rescoring performed significantly better than MMI and using the voting
schemes we obtained significant improvements over another form of discrimi-
native training, namely PLMMI.

We have identified two components to the gains that we find in this use of
SVMs. The first contribution comes from the refinement of the training data.
The baseline models themselves can be improved by training over confusable
data identified by lattice cutting. The second contribution comes from the use
of SVMs themselves.

Our ultimate goal is to apply our new framework to large vocabulary contin-
uous speech recognition. We have discussed some of the problems we expect
to encounter and have proposed and investigated constrained estimation tech-
niques that will allow us to derive features for SVMs when training data is
scarce. Initial experiments in applying this modeling approach to a large vo-
cabulary speech recognition task have been performed (Venkataramani and
Byrne, 2005). We have found that the techniques described in this paper are
very effective at resolving binary confusions in large vocabulary recognition,
however the overall impact on word error rate is necessarily limited. Byrne
(2006) discusses these issues in detail.

In this work, we were able to ignore the effects of the language model due to the
nature of the small vocabulary task studied. Since only acoustic models were
involved in decoding, the only deficiencies that were present in the decoder
derived from the acoustic model. However, in large vocabulary continuous
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speech recognition, the role of the language model must also be considered.
Possible approaches have been discussed in the disseration of Venkataramani
(2005).

We have introduced a new framework that incorporates the benefits of HMMs
and improves upon their performance. The promise of this framework is that it
allows us to explore the application of new modeling techniques to continuous
speech recognition without having to address all aspects of that large and
complex problem.
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