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ABSTRACT

Minimum risk estimation and decoding strategies based ticda
segmentation techniques can be used to refine large vocabula
continuous speech recognition systems through the egtimat

the parameters of the underlying hidden Mark models andigiro
the identification of smaller recognition tasks which po®s the
opportunity to incorporate novel modeling and decodingcero
dures in LVCSR. These techniques are discussed in the ¢aftex
going ‘beyond HMMSs'.

1. INTRODUCTION

The use of statistical methods now dominates the theory e p
tice of automatic speech processing and recognition. Timesk-
ods are predominantly based on Hidden Markov Models and thei
estimation and decoding algorithms. Given the goals ofutioisk-

shop, there may be some value in reviewing the modeling ap-

proach to discuss what moving the field ‘beyond HMMs’ might
actually entail. The underlying statistical model is a jadistribu-
tion P(O, W, 0) defined over an acoustic observation sequénce
and a word sequend& [1, 2]. If the likelihood under this distri-
bution can be computed, decision theory provides the forthef
recognizer, typically W = argmax,, P(W|O;6).

are allowed to speak freely and say whatever they wish in-what
ever manner they chose. Consequently the language modél mus
be able to assign likelihood to any word sequence that might b
uttered by a speaker, and the acoustic model must be designed
that it can provide an acoustic score to any acoustic obsenva
for any hypothesis allowed under the language model. In-prac
tice, the scope of the problem is defined by domain-specific co
lections of acoustic and language model training data. [Eaids

to the all-important issue of generalization. Both the atiouand
language model components are trained with as much in-adomai
data as can be obtained, and this is done with the goal ofibgild
models that can generalize from the training data to unsesn t
data. Two sets of procedures play a crucial role in this. Baum
Welch reestimation, and its Viterbi variants, make it pbkesito
train on the large amounts of data needed to ensure geraiatiz
Techniques such as triphone state clustering [3], Gaussimnre
splitting, and back-off strategies in n-gram language rnmd®n-

trol the growth of model complexity during training [4]. Tning
using large amounts of data and controlling model complexié
crucial to achieve generalization.

The choice of model architecture is also driven by the need fo
generalization. The goal of speech recognition is to géadran-
scriptions in the writing system used by speakers of a laggua
and the natural units of transcription are orthographicweieer

The goal of modeling is to support decoding, and assumptions the need for generalization usually demands the use of sub-w

about statistical independence are made so that the seamdiec
carried out. The now-standard generative modeling assamjst
that the joint probability distribution can be factoredaracous-
tic and language modelsP(O, W;60) = P(O|W;0)P(W;0)

acoustic models. These allow the speech sounds of freguemtl
curring words and word combinations to be used to constractm
els that can be used for less frequently observed words anac
tic contexts. If it were possible to model word sequencesctly,

where both components are modeled directly through paramet we would; it is arguably the need to construct hierarchicatlm

ric distributions. In addition to leading to efficient searpro-

els based on sub-word components that leads to the inclagion

cedures, the parameters of these generative models cartibe es phonetics, syntax, and morphology in ASR.

mated over the available training data, which typicallysists of
a transcribed acoustic training §gb, W}. The conditional inde-
pendence assumptions that separate the acoustic modettfeom
language model make it possible to perform maximum likeltho
(ML) estimation of the parameters of eaehgmax, P(O, W; 6)
decomposes into the two separate modeling problems
argmax, , P(O|W;04) andargmax, P(W;0L).

In large vocabulary continuous speech recognition taskshm

is expected of both the acoustic and language models. Sgeake

This work was supported by the NSF (U.S.A) under the Inforomat
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Summarizing the discussion thus far, the modeling approach
is to build a single system via maximum likelihood parameter
timation algorithms and perform recognition via MAP decagi
procedures. Algorithms and architectures are favorechiteaton-
sistent with the need to achieve generalization through lavger
training sets and more complex hierarchical models. Thighg
HMMs are pervasive. HMMs are often described by their topol-
ogy and details, e.g. a triphone model with left-to-riglatitions
and Gaussian mixture observation distributions, and floeview
HMMs are easy to criticize since their shortcomings as dgscr
tive models are plainly obvious. But a more holistic (allstitl
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simplistic) view is that HMMs are also the conditional inéep
dence assumptions needed to implement efficient estimatidn
decoding procedures using dynamic programming; thesehare t
assumptions that it possible to perform estimation and diago
over large amounts of data. Abandoning these efficient égos

to move ‘beyond HMMs' therefore has risks. Research in new
models and algorithms is typically done on small problemséo-
ious practical reasons. Within the statistical modeliragrfework,
unless there is the promise of eventually performing egtona
over large amounts of data, and thus achieve generalizatiere

is little hope of supplanting HMMs completely.

The discussion thus far ignores the extent to which maiastre
ASR research has already moved beyond the original HMM for-
malism. Speaker adaptation [5] and discriminative trajni6]
are now ubiquitous, and system combination techniques asich

are difficult to incorporate. Furthermore, it can be difftceven
to identify the instances in which the general purpose nwded
failing and may need to be helped.

The remainder of the paper will discuss modeling techniques
meant to identify small vocabulary recognition problemshivi
LVCSR tasks and to provide a theoretical and practical fiaonke
for incorporating novel modeling techniques into LVCSRIisTdp-
proach merges the techniques of system combination andrdisc
inative training. One of the key goals of this work is to make i
possible to retain the good performance of state of the arivHM
recognition systems when trying out new ideas. The apprakch
lows the modeler to specify the size of the problems to beeack
These can then be solved with one set of models or with special
ized models, and these models can be of any complexity - even
very simple binary classifiers can be used. The point is that t

ROVER [7] are applied whenever possible. These approachesComplexity of the models being developed need not be driven b

are usually based on ML-trained HMMs, and now that they have
entered the research mainstream, the extent to which tleegy-th
selves go beyond the basic HMM framework is taken for granted
Adaptation and normalization will not be discussed in thapegr
other than to comment that they work to refine a carefullyntdi

the entire LVCSR problem. Of course, there is a trade-off. As
will be discussed, the gains with respect to the LVCSR baseli
inevitably decrease as smaller and smaller subproblemsiare
gled out. There are several practical benefits. The firsiisitlis
possible to assess the value of a particular novel modetingrse.

speaker independent ASR system and and in the process reduc&UPPose a novel classifier is proposed to make specific types o

its ability to generalize to new speakers, that had been s® ca
fully built into the system in the first place. MMI by definitio
departs somewhat from the generative ML framework. One view
of the algorithm is that discriminative training sharpens the
basic HMMs, by using them to define a distributi&®{O|W; §)
which is optimized over the training set. Of course, the ulyiey
HMMs are retained and used to compute the posterior disivitou
using Bayes rule. A different view of the process is one inaluhi

distinctions, say between certain classes of words. Tloisguiure
can determine how many times the baseline system itselfsreake
rors over those classes, and can also provide an indicatioovo
much gain over the baseline the novel classifier can opiiraibt

be expected to yield. A second consequence is that sincmgolv
small problems tends only to yield small gains, statist&ghifi-
cance becomes an issue. Unusually large test sets may beecequ
to ensure that small gains can be trusted as an indicationtha

the generative model is completely undone and a new model isProvements are real.

constructed from its components which is estimated undesd-m
mum likelihood criterion [8, 9]. MMI also departs from the HA
framework is that it implicitly discards training data: itvang ut-
terances do not contribute to MMI when the most likely hyesik

is both correct but strongly dominant. This occurs implycand
over whole utterances: the entire sentence hypothesisohbas t
correct and dominant before this effect is observed. Howdge
spite these departures, the HMM model architecture rensaids
standard MAP decoding can still be performed with the ‘prbpe
integration of the acoustic and language models. But thatpoi
remains that the MMI formulation requires abandoning &ithe
ML estimation or the generative modeling framework. A sanil
point can be made with respect to system combination teabriq
which consider replacing the most likely hypotheses gaadray
one model with a synthesis of less likely hypotheses frontipial
models. This essentially abandons the original idea tleaketls a
single optimum model that can be trained and used in ASR.

In summary, in one way or another, speaker adaptation, MMI,
and system combination depart from the maximum likelihoed-g
erative modeling framework based on a single general madel e
timated with all available training data. What remains frdme
underlying modeling framework is that the entirety of thaining
data continues to define the scope of the recognition prabldm
overall goal is still to train sets of models capable of taukithe
entire recognition task. The issue that will be discussetispa-
per is whether the need to rely on models capable of thisraetre
generality works against the ability to discriminate. Misdand
algorithms selected based on how well they work well ‘in gafie
may fail in particular instances; conversely, modelingrapphes
which may be well-suited for making certain specific distiogs

Another benefit of this approach relative to developing new
techniques is that by focusing on small, independent prablihe
size of the training data relevant to each problem can bédlgrea
duced. This has multiple benefits. Training data is seletttatlis
particularly relevant to the classification problem: thedglized
classifiers can be estimated over regions of the training/bete
the baseline HMM itself fails to make the correct distinotid@ his
leads to more specialized models. As a practical considerat
this also makes it easier to train novel architectures ualgg-
rithms that otherwise might be unable to make use of all ttieeen
training set. The next section discusses how lattice segtien
techniques developed originally Minimum Bayes Risk dergdi
procedures can be used to support the development of naugd-ac
tic modeling and recognition within LVCSR tasks.

2. LATTICE SEGMENTATION AND THE SELECTION
OF RECOGNITION SUBPROBLEMS

Minimum Bayes Risk decoders [10, 11, 12] find a sentence hy-
pothesis with the least expected error under a loss funeson

W = argmin Y (W, W')P(W'|0;0).

wew Wiew

)

The motivation for the approach is tHdt, -) describes a task per-
formance metric, such as the Levenshtein distance assdaidith
Word Error Rate, so that models estimated under some other cr
terion can be 'tuned’ to a task by modifying the decoding proc
dure [13]. This is a search problem in whigh are N-Best lists

or lattices that incorporat® (1W’|O) as a posterior distribution on
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Fig. 1. Lattice Segmentatiora: First-pass lattice with MAP high-
lighted; b: Lattice to string alignment under the Levenshtein dis-
tance to the MAP patltg: Segment sets): Refined Search Space
consisting of binary segment sets. Word hypotheses aredagg
so specialized models can be used in lattice rescoen@.orrect
transcription used to measured the quality of the selecied.p

word strings. For each hypothes$ig € W, the risk is computed

RW, W; 0)= 3 I(W,W)PW'0;0) (2
w’ew
and the hypothesis with the least risk is selected
W = argmin R(W, W; 0) . 3)

wew

Efficient algorithms have been developed to compute theofisk
hypothesigV under the Levenshtein loss function [14]. Since itis
straightforward to compute likelihoods such B§W'|O; 6) over
ASR lattices, the key is an efficiehdttice-to-string alignment al-
gorithm to find and represent the co&ts, W’) for all W' in any
latticeW. In addition to making the MBR search problem feasible
under certain loss functions, we use these algorithms tmeey
the first-pass ASR lattices. The alignment algorithm isewed
briefly in the following section within the context of idefyling
recognition subproblems.

Pruning Avg. # Hyps. / Segment Sets

Threshold| LER | Segment Set| Types | Tokens
0.00 27.3 11.65 94029 | 1393099
0.05 35.3 2.82 49837 | 212852
0.10 37.9 2.35 35278 | 134252
0.20 41.1 2.06 17132 | 63267
0.30 43.2 2.00 7288 26913
0.40 447 2.00 2249 7930
0.50 45.6 - 0 0

Tablel. Segment Set Analysis Over A 25 Hour Test Set. The aver-
age number of hypotheses per segment set, number of dstigict
ment sets, and total number of segment sets after postesad
pruning as described in Section 2.

segment sets are of equal value in improving the baselinsorire
segment sets, the reference (MAP) hypothesis is likely todve
rect - ideally these should be left alone. In others, the segreet
does not contain the truth as one of the alternatives - tHesdd
be ignored. The ideal problems to attack are those defineddy s
ment sets within which the MAP path is wrong and the correti pa
is available as an alternative. An additional concern ig thape-
cialized models are to be trained, the selected subprotdemdd
also appear frequently enough in training data so that rsozed
be reliably estimated. Ideally, this should all be carrietiwith a
minimum of supervision.

An unsupervised approach based on the posterior scores over
lattice segment sets has been developed [17]. Segmentreets a
identified by lattice-to-string alignment under the Levete dis-
tance, but the joint acoustic and language model scores tinem
lattice are retained and can be used to define posterioibdistns
over the hypotheses in the segment sets, and by extensiotheve
portions of the segment sets themselves. This allows usutwepr
the segment sets to finally obtain confusion pairs (Fig. 1, d)

The selection process summarized above and depicted in Fig-
ure 1 is referred to akattice pinching. It consists of consecutive
alignment, segmentation, and pruning steps to identifyneseg
sets. As mentioned, the process is effective only to thenextet
it identifies weaknesses in the primary hypothesis andtfseful
alternative hypotheses.

We have evaluated our approach in the MALACH spontaneous
Czech conversational domain [18]. The system consistsaaiay
independent continuous mixture density, tied state, enassl,
gender-independent, triphone HMMs trained with HTK usiag 6
hours of transcribed speech (24065 utterances). The spegsh
parameterized into 39-dimensional, MFCC coefficientshlilta
and acceleration coefficients. The AT&T Large Vocabulary De
coder was used to generate lattices over the training ahgees

We now summarize recent studies of lattice segmentation in with a bigram language model based on a 83000 word vocabulary

discriminative training [15] and applications of Suppomctor
Machines in LVCSR rescoring [16, 17]. Lattice segmentation-
verts a first-pass lattice into a sequence of smaller stisdatthrough
a Levenshtein alignment of the lattice to a reference paf. [1
Here, test set lattices (Fig. 1, a) are aligned to the printgry
pothesis so that word sequences from the lattice are aligitad
words in the primary hypothesis (Fig. 1, b). This produssesnent
sets, which are groups of substrings from the lattice identified a
alternatives to words in the primary hypothesis (Fig. 1, c).

Lattice-based MMI [6, 19] was performed. The test set sulidie

this section consisted of approx. 8400 utterances spokeerby

held-out speakers (approx. 25 hours of speech). Unsupeérvis

MLLR transforms for each of the test-set speakers were agtitn

on a 1000 utterance subset of the test set. The baselinarsyste

produced a test set lattices with WER of 45.6% and 22.3% LER.
We now analyze the performance of the lattice pinching pro-

cedure. Referring to Table 1, we can see that the oracleckditi-

ror Rate increases due to pinching and pruning the testtSetka

These segment sets define the LVCSR subproblems that carThis is the inevitable limitation of this approach: focugim small
be considered in subsequent decoding passes. Howeverll not adecoding problems with the larger ASR problem inevitaltyiis
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Pruning | #CPOC/ | #MAPERR/| Segment Sets
Threshold | #CPERR | #MAPCOR | Types | Tokens
0.00 14.30 0.24 22 7324
0.05 4.7 0.64 26 8022
0.10 3.3 0.92 26 6860
0.20 3.2 1.17 17 3831
0.30 4.2 1.15 6 1405
0.40 11.0 1.04 2 337
0.50 - - 0 0
Table 2. Ratio of #CPOC/#CPERR segments and

#MAPERR/#MAPCOR segments for the confusion pairs ob-
served at least 100 times in the 25 hour test set.

the gains available over the baseline system. Based on these
sults we selected a pruning theshold of 0.3, since we aresttd

in finding binary classification problems. All non-binarygseent
sets are pruned back to the MAP hypothesis. We also restricte
our attention to those confusion pairs observed in the &t at
least 100 times. The reason for doing this is that we wishdmbto
able to measure the performance of the individual binargstia
fiers we trained; for each classifier we have a test set of at lea
100 instances. This is not a necessary limitation, howearat,if
we were more interested in overall WER reduction and legs-int
ested in assessing the quality of the novel classifiers, waddvo
have chosen more pairs. Referring to Figure 1 d, only these fr
quently occurring confusion pairs are retained, and akttare
pruned back to the baseline hypothesis.

The process so far is unsupervised. To further analyze the co
fusion pairs, we Levenshtein-align the pinched latticeg (Fd) to
the truth (Fig 1 e). We first count the number of Confusion Pair
Errors (CPERR), defined as confusion pairs that don't corttee
truth. For example, in Fig. 1 d, (A:17, J:17) is classified #E&R
since it does not contain the true word ‘K’; the other setscias-
sified as Confusion Pair Oracle Correct (CPOC). Within th©CP
segments we can distinguish those in which the MAP path agree
with the oracle path (MAPCOR) and those in which the MAP path
is in error (MAPERR). In Fig. 1, d the pair (V:5, B:5) is classi
fied as MAPERR, and the pairs (OH:23, 4:23) and (A:7, 8:7) are
MAPCOR; both these sets are CPOC.

We further process the pinched lattices constructed fram th
frequently occurring confusion pairs. We renormalize ¢hks-
tices to define the posterior distribution over these bircmyfu-
sion pairs, and again apply a posterior-based pruning sethe
stances of the confusion pairs. The results are as reportéa-i
ble 2. At a pruning threshold of 0.4, the surviving confuspairs
are high quality: the CPERR pairs occur far less frequettint

2.1. Support Vector Machinesfor LVCSR SubProblems

We now review our approach to building SVMs for these corfasi
pairs. We begin by training special purpose, whole-word H) M
for the words in the confusion pairs. We next clone these ol
word models for the confusion pairs, e.g. the model for thedwo
‘A is replicated so that A:17 and A:7 are two different whole
word HMMs. For example, to train the models for the confusion
pair (A:7, 8:7), an acoustic training subset is created lisaeting
all the acoustic segments for ‘A’ and ‘8’ from the trainingtala
MMl is then used to further train the models A:7 and 8:7 ovés th
training subset. This allows to accumulate statistics oifézrent
recognition problems and thus create specialized decdtcmrs
specialized training sets.

To train SVMs for the binary confusion pairs, we use the score
space approach developed by Smith and Gales [20, 21, 16i-Sta
tics derived from the HMM likelihoods are used to transform a
variable-length sequence into a static fixed-dimensiosalasen-
tation which can be used in SVM training and classificatibe;di-
mension of the features to be classified is derived from timetau
of parameters in each HMM and not from the length of the speech
segment. Our choice of this approach was driven mainly by ex-
pedience; using MMI-trained whole word models to extraatist
tics may indeed confer modeling advantages in that thesttai
are generated by models tuned to the specific classificatamn p
lem. However, alternative approaches based on monophode mo
els, rather than word models, can also be used (M. Galeqyqars
communication), which may be particularly useful if datarsity
is an issue. This approach avoids the need to generateatier
the training set; MMI over confusion pairs can be performiaa s
ply by using two version of the transcriptions that differ the
word in question. All training statistics over confusionirpacan
be obtained using Baum Welch. Following the selection Getas
explained, we chose 21 confusion pairs to study. On avefag@,
hours of speech was selected as a training set for each ammfus
pair. TheGiniSVM toolkit [22] was used to train classifiers based
on mean and likelihood-ratio scores derived from the MMiriea
word HMMs; details are provided in [17].

As discussed, selecting the test set to include at leastrtQ0 i
stances of each confusion pair allowed us to make meaningful
comparisons of the performance of the SVM trained for each pa
to the MAP baseline performance. We found that performance
relative to the MAP baseline is mixed; there are not consiste-
provements due to using the SVM alone. However the latbee-t
string alignment procedure is carefully designed so thatcthm-
plete original paths and their likelihoods are retaine@ulghout
pinching and pruning. We can thus derive reliable postsrwer
the remaining baseline hypotheses and perform hypothesis ¢
bination. To combine the SVM and MAP hypotheses, a posterior

CPOC pairs; and within these the the MAPERR count is about distribution over the SVM decisions was estimated by logis-
equal to the MAPCOR count, so about half the MAP hypotheses gression [22].

are incorrect. Unfortunately, there are only two distimmftsion
pairs and pruning eliminates all but 337 instances of themthé

This associates a confidence (estimated likelihood of being
correct) with each SVM choice. For a particular instance of a

subsequent experiments, we prune at a threshold of 0.1. ig\t th confusion pair with word$w: , w2), let p,(w) be the MAP poste-
level, we still have three times as many CPOC pairs as CPOERRrior over the pinched lattices, and (w) be the SVM confidence

the system is still making errors roughly half the time (MAFE

in each decision. A simple linear interpolation with weigigt A

~ MAPCOR), and we have a diverse test set of 6860 observa- gives a combined likelihood over the word pair. With= 0.5, the

tions of 26 distinct confusion pairs. Since we are speclfidat
terested in acoustic modeling, we discard confusion painsist-

ing of homonyms only; this leaves us with 2991 instances of 21
confusion pairs.

error count decreases in 18 of the 21 pairs. The influenceeskth
reductions on the overall WER over the complete test setdesie
sarily limited, as already discussed. Under the MAP-SVM bbm
nation system, the baseline MAP WER is reduced from 45.6% to
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45.5%. However small, these gains are statistically sicpnifi and
stable with respect ta: we obtained this performance improve-
ment forA = 0.4,0.5,0.6, and0.7, and in all instances the sig-
nificance test p-values [23] were less than 0.001, so we @am cl
improvement with great confidence. These gains are smaii fro
the point of view of improving an LVCSR system. However, from
the point of view of validating our proposed SVM modeling ap-
proach, we can simultaneously claim significant improveismien
both a small vocabulary recognition problem and a LVCSResyst
incorporating MMI, MLLR speaker adaptation and other stiHte
the art techniques. We also offer this example to show thttgi
underlying experiments are carefully constructed, eveselrtech-
niques can be applied to LVCSR problems even in the earlestag
of their development.

3. MINIMUM BAYESRISK PARAMETER ESTIMATION

Risk-based parameter estimation procedures attempt tionimin
the expected risk over the training set. Given a transcrila¢abase
{W,0}, the estimation objective is
0* = argmin R(W, W;0) 4)
0

whereR(W, W;0) = Sy oo LW, W) P(W'[0; 6) .

over lattices, which limits its usefulness in LVCSR taskieve
the N-Best lists would have to be exceedingly deep.

The difficulty is that the terf( W, W) in K (W', W; 6) must
be found for allW’ € W. If (W, W’) was a likelihood based
guantity, computation would be straightforward, but sitieeloss
is based on the Levenshtein distance, the computation neust b
done for each complete path through the lattice. Fortulgptiss
is exactly the computation that is performed by latticestidng
alignment. That procedure produces a new lattice in whicin ea
path is marked with the information needed to align it to thie r
erence stringV. This information is preserved through lattice
pinching and pruning, and results iniaduced lossfunction I; (W, W’).
We refer to it as induced by the lattice pinching because fite o
mum alignment begweeW andW’ may be not be allowed within
the pinched lattic&V, e.g. Fig 1a allows more diverse alignments
than Fig 1d. Hencé; only approximateg. But it allows us to
perform estimation under the following criterion

0* = argmin R; (W, W;6) (6)
0

whereR (W, W;0) = >y cp L (W, W) P(W'|0;0) .

By controlling the amount of pruning performed after ladtic
alignment, the size of the pinched lattie can be restricted. This
allows us to expand the pinched lattice into a reasonabhksdi-

W is taken to be a set of hypotheses being considered as al-Best list, with alignment costs (W, W), so that the update pro-

ternatives to the truth’, and we assume that their distance to the
correct transcriptiofiV is measured by the string edit or Leven-
stein distancé(W, W) associated with Word Error Rate (WER).

The estimation problem hinges on determining the contribu-
tion to the overall risk of each hypothedig’ in W. If a relatively
likely hypothesisW’ differs significantly from¥/ as measured
by [(W, W), it will add substantially to the overall risk. Thus a
successful estimation strategy is one that moves probahikass
towards those hypotheses that are close to the referende nehi
ducing the likelihood of those hypotheses that are far away.

While the loss functio(W, W) and the likelihood under the
current model parameters dominate the overall fiskalso plays
animportant role in that, since the risk is measured dVeit must
provide a representative sample of hypotheses that ardikel)
and error-full. IfWW is not chosen well, the risk measurements will
be biased. In particular there is a danger of underestigdtia
risk.

cedure of Kasieet al. can be performed in LVCSR. We refer to
this procedure aRinched Lattice Minimum Bayes Risk Discrim-
inative Training (PLMBRDT). Over the MALACH Czech ASR
training set described earlier, lattices were generatéagube
baseline MMI system and lattice-to-string alignment wigspect
to the reference transcription was performed. Lattice sega
tion was done, focusing again on the error pairs that ocduro®
times or more; this yielded 117 confusion pairs observedad ¢6
48,302 times in training.

For every word in the reference hypotheses there was an av-
erage of 0.13 confusion pairs. As a result, after pinchirg,atl
lattices contained confusion pairs; put another way, tldeidged
risk over these lattices was zero. These utterances werfdhe
discarded from training, reducing the training set fromd@®urs
to 52.4 hours of speech. The remaining pinched lattices were
panded into N-Best lists, with an average depth of 36.5 Hgot
ses. On a 2 hour subset of the full 25 hour test set, the ML in&sel

Kaiseret al. [24] have shown how the Extended Baum Welch [25performance of the system was 44.3% WER. This was reduced to

algorithm can be applied to obtain a risk-minimizing vatiafithe
MMI re-estimation procedure for the parameters of statgeddent
Gaussian observation distributions, as shown for the Gausseans
> KW' W;0) 32 vs(msW'o(r) + Dspis
_ W’ ew

Ho = > KW/ W;0) > vs(r; W) + Ds
w'’ew

(®)

whereK (W', W; 6) is computed as

[ > PW"|0;0)l(W, W) — (W, W")] P(W'|O; 0)

w"ew

The quantitykX (W', W; 6) determines the sensitivity of the over-
all risk to the contribution of each hypothesig’. The relationship
to the MMI procedure is obvious: for the 0/1 loss functionseit
duces to the usual MMI update relationship. Kaiser et al. atem
strated that this procedure can be used over N-Best listsrof ¢
peting hypotheses. However, Equation 5 is not easily imptesd

41.5% by five MMI iterations, and was further reduced to 41.1%
by five PLMBRDT iterations (with p-value 0.013 relative toeth
MMI hypotheses).

4. DISCUSSION

Lattice segmentation and Pinched Lattice Minimum Bayek Ris
Discriminative Training have been discussed as two praesdu
based on HMMs and at the same time depart significantly from
the original HMM framework. These techniques evolved from
techniques intended to minimize risk, rather than maxirfiiesi-
hood, in both estimation and decoding. Lattice segmemtatam

be used to define recognition subproblems within LVCSR tasks
‘Defining a subproblem’ implies more than just selecting akm
recognition task such as a particular binary word choicesug
gest a procedure to identify which particular confusiors setthe
test set should be selected as candidates for correctiorsugre
gest how training data might be collected to train modelotoes
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these problems; and we show how the final simple classifier can[11] V. Goel, S. Kumar, and W. Byrne, “Confidence based lat-

be reincorporated into the overall large vocabulary ASPblenm.
The overall framework is still under development, but ourdsts
of Support Vector Machines demonstrate that novel teclasigan
be applied to LVCSR problems even in the early stages of theeir
velopment. There are also interesting issues in trainidigest set
sizes. For reasons of statistical significance, large ststsem

inevitable in working on small LVCSR subproblems. On thesoth
hand, the training set is reduced in these LVCSR subproblems [13]
and in PLMBRDT, as subsets of the training set are selected to

solve specific problems. Selecting small training sets MEER
subproblems offers practical advantages in developing teetv
nigues, and it may in addition provide modeling advantagian
the sets contain exactly those training instances overhwtiie

baseline HMM is weak. The determination of training set size
can be made more rigorous, in that it follows from the trajnin

objective function, through the use of lattice pinching gmdn-
ing to define an induced loss function over the training S&tks.
Training set utterances which incur no risk under the inddoss
function are simply not considered by PLMBRDT, with a reisigt
reduction in the original training set. Apart from these sorhat
abstract considerations, the overall approach offers & ffou the

the development of novel modeling and decoding procedures t

improve HMM-based ASR systems.

Acknowledgments Many thanks to M. Gales for comments and sugges-

tions. My colleagues V. Goel, S. Kumar, V. Doumpiotis, S. Kadlis,
S.Chakrabartty, and V. Venkataramani deserve the credihéowork and
results discussed here.

5. REFERENCES

[1] F. Jelinek, L.R. Bahl, and R.L. Mercer, “Design of a lin-

guistic statistical decoder for the recognition of conting
speech,”IEEE Trans. Information Theory, vol. 21, 1975.

[2] F. Jelinek, “Continuous speech recognition by statati
methods,”Proceedings of the |IEEE, vol. 64, 1976.

[3] J. Odell, THE USE OF CONTEXT IN LARGE VOCABU-
LARY SPEECH RECOGNITION, Ph.D. thesis, University of
Cambridge, 1995.

[4] S. Young et al., The HTK Book Version 3.0, Cambridge
University, 2000.

[5] C. J. Leggetter and P. C. Woodland, “Maximum likelihood
linear regression for speaker adaptation of continuous den

sity hidden Markov models,” Computer Speech and Lan-
guage, vol. 9, pp. 171-185, Apr. 1995.

[6] P.Woodland and D. Povey, “Large scale discriminatieérts
ing for speech recognition,” iRroc. ITWASR, ISCA, 2000.

[7] J. Fiscus, “A Post-processing System to Yield Reduced
Word Error Rates: Recognizer Output Voting Error Reduc-

tion (ROVER),” in|EEE ASRU Wbrkshop, 1997.

[8] Y. Ephraim and L. R. Rabiner, “On the relations between

modeling approaches for information sourcd&EE Trans.
Information Theory, vol. 36, no. 2, March 1990.

[9] W. Byrne, “Information geometry and maximum likelihood

criteria,” in Conference on Information Sciences and Sys-
tems, Princeton, NJ, 1996.

[10] A. Stolcke, Y. Konig, and M. Weintraub, “Explicit worde
ror minimization in N-Best list rescoring,” iEurospeech.
Rhodes, Greece, 1997.

tice segmentation and minimum bayes-risk decoding of lat-
tice segments,” ifProceedings of the European Conference
on Speech Technology, Aalborg, Denmark, 2001.

S. Kumar and W. Byrne, “Risk based lattice cutting for
segmental minimum Bayes-risk decoding,” I{DS_P 2002,
Denver, CO, USA, 2002, pp. 373-376.

V. Goel and W. Byrne, “Minimum Bayes-Risk automatic
speech recognition,Computer Speech and Language, vol.
14(2), pp. 115-135, 2000.

V. Goel, S. Kumar, and W. Byrne, “Segmental mini-
mum Bayes-risk decoding for automatic speech recogriition,
|EEE Trans. Speech and Audio Processing, May 2004.

V. Doumpiotis and W. Byrne, “Lattice segmentation and
minimum Bayes risk discriminative training for large voeab
ulary continuous speech recognitiongpeech Communica-
tion, Submitted.

V. Venkataramani, S. Chakrabartty, and W. Byrne,
“Ginisupport vector machines for segmental minimum
Bayes risk decoding of continuous speech,Computer
Soeech and Language, Submitted.

V. Venkataramani and W. Byrne, “Lattice segmentation
and support vector machines for large vocabulary contiguou
speech recognition,” iRroc. ICASSP, 2005, Submitted.

W. Byrne et al., “Automatic recognition of spontaneous
speech for access to multilingual oral history archivéSEE
Trans. Speech and Audio Proc., July, 2004.

V. Doumpiotis, S. Tsakalidis, and W. Byrne, “Latticegse
mentation and minimum Bayes risk discriminative trairing,
in Eurospeech, 2003.

N. Smith and M. Gales, “Using SVMs and discriminative
models for speech recognition,” Rroc. ICASSP, 2002.

V. Venkataramani and W. Byrne, “Support vector mackine
for segmental minimum Bayes risk decoding of continuous
speech,” inASRU, 2003.

S. Chakrabartty and G. Cauwenberghs, “Forward decod-
ing kernel machines: A hybrid HMM/SVM approach to se-
guence recognition,” ifProc. SYM’2002, Lecture Notes in
Computer Science. MIT Press, 2002, vol. 2388, Toolkit:
http://bach.ece.jhu.edu/svm/ginisvm/.

D. Pallett et al., “Tools for the analysis of benchmaplesch
recognition tests.,” ifProc. ICASSP, 1990.

J. Kaiser, B. Horvat, and Z. Kacic, “Overall risk criten es-
timation of hidden Markov model parameter§geech Com-
munication, vol. 38, no. 3—4, pp. 383-398, 2002.

P. S. Gopalakrishnan, Dimitri Kanevsky, Arthur Nadaed
David Nahamoo, “An inequality for rational functions with
applications to some statistical estimation problem&EE
Trans. Information Theory, Jan. 1991.

ATR Workshop "Beyond HMMs”, Kyoto, Japan, December 2004 vited Paper and Lecture



