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ABSTRACT

Minimum risk estimation and decoding strategies based on lattice
segmentation techniques can be used to refine large vocabulary
continuous speech recognition systems through the estimation of
the parameters of the underlying hidden Mark models and through
the identification of smaller recognition tasks which provides the
opportunity to incorporate novel modeling and decoding proce-
dures in LVCSR. These techniques are discussed in the context of
going ‘beyond HMMs’.

1. INTRODUCTION

The use of statistical methods now dominates the theory and prac-
tice of automatic speech processing and recognition. Thesemeth-
ods are predominantly based on Hidden Markov Models and their
estimation and decoding algorithms. Given the goals of thiswork-
shop, there may be some value in reviewing the modeling ap-
proach to discuss what moving the field ‘beyond HMMs’ might
actually entail. The underlying statistical model is a joint distribu-
tion P (O, W ; θ) defined over an acoustic observation sequenceO

and a word sequenceW [1, 2]. If the likelihood under this distri-
bution can be computed, decision theory provides the form ofthe
recognizer, typically :Ŵ = argmax

W
P (W |O; θ).

The goal of modeling is to support decoding, and assumptions
about statistical independence are made so that the search can be
carried out. The now-standard generative modeling assumption is
that the joint probability distribution can be factored into acous-
tic and language models:P (O, W ; θ) = P (O|W ; θ)P (W ;θ)
where both components are modeled directly through paramet-
ric distributions. In addition to leading to efficient search pro-
cedures, the parameters of these generative models can be esti-
mated over the available training data, which typically consists of
a transcribed acoustic training set{O, W̄}. The conditional inde-
pendence assumptions that separate the acoustic model fromthe
language model make it possible to perform maximum likelihood
(ML) estimation of the parameters of each;argmaxθ P (O, W̄ ; θ)
decomposes into the two separate modeling problems
argmax

θA
P (O|W̄ ; θA) andargmax

θL
P (W̄ ; θL).

In large vocabulary continuous speech recognition tasks, much
is expected of both the acoustic and language models. Speakers
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are allowed to speak freely and say whatever they wish in what-
ever manner they chose. Consequently the language model must
be able to assign likelihood to any word sequence that might be
uttered by a speaker, and the acoustic model must be designedso
that it can provide an acoustic score to any acoustic observation
for any hypothesis allowed under the language model. In prac-
tice, the scope of the problem is defined by domain-specific col-
lections of acoustic and language model training data. Thisleads
to the all-important issue of generalization. Both the acoustic and
language model components are trained with as much in-domain
data as can be obtained, and this is done with the goal of building
models that can generalize from the training data to unseen test
data. Two sets of procedures play a crucial role in this. Baum
Welch reestimation, and its Viterbi variants, make it possible to
train on the large amounts of data needed to ensure generalization.
Techniques such as triphone state clustering [3], Gaussianmixture
splitting, and back-off strategies in n-gram language models, con-
trol the growth of model complexity during training [4]. Training
using large amounts of data and controlling model complexity are
crucial to achieve generalization.

The choice of model architecture is also driven by the need for
generalization. The goal of speech recognition is to generate tran-
scriptions in the writing system used by speakers of a language,
and the natural units of transcription are orthographic. However
the need for generalization usually demands the use of sub-word
acoustic models. These allow the speech sounds of frequently oc-
curring words and word combinations to be used to construct mod-
els that can be used for less frequently observed words and acous-
tic contexts. If it were possible to model word sequences directly,
we would; it is arguably the need to construct hierarchical mod-
els based on sub-word components that leads to the inclusionof
phonetics, syntax, and morphology in ASR.

Summarizing the discussion thus far, the modeling approach
is to build a single system via maximum likelihood parameteres-
timation algorithms and perform recognition via MAP decoding
procedures. Algorithms and architectures are favored thatare con-
sistent with the need to achieve generalization through ever larger
training sets and more complex hierarchical models. This iswhy
HMMs are pervasive. HMMs are often described by their topol-
ogy and details, e.g. a triphone model with left-to-right transitions
and Gaussian mixture observation distributions, and from this view
HMMs are easy to criticize since their shortcomings as descrip-
tive models are plainly obvious. But a more holistic (albeitstill
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simplistic) view is that HMMs are also the conditional indepen-
dence assumptions needed to implement efficient estimationand
decoding procedures using dynamic programming; these are the
assumptions that it possible to perform estimation and decoding
over large amounts of data. Abandoning these efficient algorithms
to move ‘beyond HMMs’ therefore has risks. Research in new
models and algorithms is typically done on small problems for var-
ious practical reasons. Within the statistical modeling framework,
unless there is the promise of eventually performing estimation
over large amounts of data, and thus achieve generalization, there
is little hope of supplanting HMMs completely.

The discussion thus far ignores the extent to which mainstream
ASR research has already moved beyond the original HMM for-
malism. Speaker adaptation [5] and discriminative training [6]
are now ubiquitous, and system combination techniques suchas
ROVER [7] are applied whenever possible. These approaches
are usually based on ML-trained HMMs, and now that they have
entered the research mainstream, the extent to which they them-
selves go beyond the basic HMM framework is taken for granted.
Adaptation and normalization will not be discussed in this paper
other than to comment that they work to refine a carefully trained
speaker independent ASR system and and in the process reduce
its ability to generalize to new speakers, that had been so care-
fully built into the system in the first place. MMI by definition
departs somewhat from the generative ML framework. One view
of the algorithm is that discriminative training sharpens up the
basic HMMs, by using them to define a distributionP (O|W̄ ; θ)
which is optimized over the training set. Of course, the underlying
HMMs are retained and used to compute the posterior distribution
using Bayes rule. A different view of the process is one in which
the generative model is completely undone and a new model is
constructed from its components which is estimated under a maxi-
mum likelihood criterion [8, 9]. MMI also departs from the HMM
framework is that it implicitly discards training data: training ut-
terances do not contribute to MMI when the most likely hypothesis
is both correct but strongly dominant. This occurs implicitly and
over whole utterances: the entire sentence hypothesis has to be
correct and dominant before this effect is observed. However de-
spite these departures, the HMM model architecture remainsand
standard MAP decoding can still be performed with the ‘proper’
integration of the acoustic and language models. But the point
remains that the MMI formulation requires abandoning either the
ML estimation or the generative modeling framework. A similar
point can be made with respect to system combination techniques
which consider replacing the most likely hypotheses generated by
one model with a synthesis of less likely hypotheses from multiple
models. This essentially abandons the original idea that there is a
single optimum model that can be trained and used in ASR.

In summary, in one way or another, speaker adaptation, MMI,
and system combination depart from the maximum likelihood gen-
erative modeling framework based on a single general model es-
timated with all available training data. What remains fromthe
underlying modeling framework is that the entirety of the training
data continues to define the scope of the recognition problem. The
overall goal is still to train sets of models capable of tackling the
entire recognition task. The issue that will be discussed inthis pa-
per is whether the need to rely on models capable of this extreme
generality works against the ability to discriminate. Models and
algorithms selected based on how well they work well ‘in general’
may fail in particular instances; conversely, modeling approaches
which may be well-suited for making certain specific distinctions

are difficult to incorporate. Furthermore, it can be difficult even
to identify the instances in which the general purpose models are
failing and may need to be helped.

The remainder of the paper will discuss modeling techniques
meant to identify small vocabulary recognition problems within
LVCSR tasks and to provide a theoretical and practical framework
for incorporating novel modeling techniques into LVCSR. This ap-
proach merges the techniques of system combination and discrim-
inative training. One of the key goals of this work is to make it
possible to retain the good performance of state of the art HMM
recognition systems when trying out new ideas. The approachal-
lows the modeler to specify the size of the problems to be tackled.
These can then be solved with one set of models or with special-
ized models, and these models can be of any complexity - even
very simple binary classifiers can be used. The point is that the
complexity of the models being developed need not be driven by
the entire LVCSR problem. Of course, there is a trade-off. As
will be discussed, the gains with respect to the LVCSR baseline
inevitably decrease as smaller and smaller subproblems aresin-
gled out. There are several practical benefits. The first is that it is
possible to assess the value of a particular novel modeling scheme.
Suppose a novel classifier is proposed to make specific types of
distinctions, say between certain classes of words. This procedure
can determine how many times the baseline system itself makes er-
rors over those classes, and can also provide an indication of how
much gain over the baseline the novel classifier can optimistically
be expected to yield. A second consequence is that since solving
small problems tends only to yield small gains, statisticalsignifi-
cance becomes an issue. Unusually large test sets may be required
to ensure that small gains can be trusted as an indication that im-
provements are real.

Another benefit of this approach relative to developing new
techniques is that by focusing on small, independent problems the
size of the training data relevant to each problem can be greatly re-
duced. This has multiple benefits. Training data is selectedthat is
particularly relevant to the classification problem: the specialized
classifiers can be estimated over regions of the training setwhere
the baseline HMM itself fails to make the correct distinction. This
leads to more specialized models. As a practical consideration,
this also makes it easier to train novel architectures usingalgo-
rithms that otherwise might be unable to make use of all the entire
training set. The next section discusses how lattice segmentation
techniques developed originally Minimum Bayes Risk decoding
procedures can be used to support the development of novel acous-
tic modeling and recognition within LVCSR tasks.

2. LATTICE SEGMENTATION AND THE SELECTION
OF RECOGNITION SUBPROBLEMS

Minimum Bayes Risk decoders [10, 11, 12] find a sentence hy-
pothesis with the least expected error under a loss functionas

Ŵ = argmin
W∈W

X

W ′∈W

l(W,W
′)P (W ′|O; θ). (1)

The motivation for the approach is thatl(·, ·) describes a task per-
formance metric, such as the Levenshtein distance associated with
Word Error Rate, so that models estimated under some other cri-
terion can be ’tuned’ to a task by modifying the decoding proce-
dure [13]. This is a search problem in whichW are N-Best lists
or lattices that incorporateP (W ′|O) as a posterior distribution on
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Fig. 1. Lattice Segmentation.a: First-pass lattice with MAP high-
lighted; b: Lattice to string alignment under the Levenshtein dis-
tance to the MAP path;c: Segment sets;d: Refined Search Space
consisting of binary segment sets. Word hypotheses are tagged
so specialized models can be used in lattice rescoring.e: Correct
transcription used to measured the quality of the selected pairs.

word strings. For each hypothesisW ∈ W, the risk is computed

R(W, W; θ) =
X

W ′∈W

l(W,W
′) P (W ′|O; θ) (2)

and the hypothesis with the least risk is selected

Ŵ = argmin
W∈W

R(W, W; θ) . (3)

Efficient algorithms have been developed to compute the riskof a
hypothesisW under the Levenshtein loss function [14]. Since it is
straightforward to compute likelihoods such asP (W ′|O; θ) over
ASR lattices, the key is an efficientlattice-to-string alignment al-
gorithm to find and represent the costsl(W,W ′) for all W ′ in any
latticeW. In addition to making the MBR search problem feasible
under certain loss functions, we use these algorithms to segment
the first-pass ASR lattices. The alignment algorithm is reviewed
briefly in the following section within the context of identifying
recognition subproblems.

We now summarize recent studies of lattice segmentation in
discriminative training [15] and applications of Support Vector
Machines in LVCSR rescoring [16, 17]. Lattice segmentationcon-
verts a first-pass lattice into a sequence of smaller sub-lattices through
a Levenshtein alignment of the lattice to a reference path [14].
Here, test set lattices (Fig. 1, a) are aligned to the primaryhy-
pothesis so that word sequences from the lattice are alignedwith
words in the primary hypothesis (Fig. 1, b). This producessegment
sets, which are groups of substrings from the lattice identified as
alternatives to words in the primary hypothesis (Fig. 1, c).

These segment sets define the LVCSR subproblems that can
be considered in subsequent decoding passes. However, not all

Pruning Avg. # Hyps. / Segment Sets
Threshold LER Segment Set Types Tokens

0.00 27.3 11.65 94029 1393099
0.05 35.3 2.82 49837 212852
0.10 37.9 2.35 35278 134252
0.20 41.1 2.06 17132 63267
0.30 43.2 2.00 7288 26913
0.40 44.7 2.00 2249 7930
0.50 45.6 - 0 0

Table 1. Segment Set Analysis Over A 25 Hour Test Set. The aver-
age number of hypotheses per segment set, number of distinctseg-
ment sets, and total number of segment sets after posterior-based
pruning as described in Section 2.

segment sets are of equal value in improving the baseline. Insome
segment sets, the reference (MAP) hypothesis is likely to becor-
rect - ideally these should be left alone. In others, the segment set
does not contain the truth as one of the alternatives - these should
be ignored. The ideal problems to attack are those defined by seg-
ment sets within which the MAP path is wrong and the correct path
is available as an alternative. An additional concern is that, if spe-
cialized models are to be trained, the selected subproblemsshould
also appear frequently enough in training data so that models can
be reliably estimated. Ideally, this should all be carried out with a
minimum of supervision.

An unsupervised approach based on the posterior scores over
lattice segment sets has been developed [17]. Segment sets are
identified by lattice-to-string alignment under the Levenshtein dis-
tance, but the joint acoustic and language model scores fromthe
lattice are retained and can be used to define posterior distributions
over the hypotheses in the segment sets, and by extension over the
portions of the segment sets themselves. This allows us to prune
the segment sets to finally obtain confusion pairs (Fig. 1, d).

The selection process summarized above and depicted in Fig-
ure 1 is referred to aslattice pinching. It consists of consecutive
alignment, segmentation, and pruning steps to identify segment
sets. As mentioned, the process is effective only to the extent that
it identifies weaknesses in the primary hypothesis and offers useful
alternative hypotheses.

We have evaluated our approach in the MALACH spontaneous
Czech conversational domain [18]. The system consists of speaker
independent continuous mixture density, tied state, cross-word,
gender-independent, triphone HMMs trained with HTK using 65
hours of transcribed speech (24065 utterances). The speechwas
parameterized into 39-dimensional, MFCC coefficients, with delta
and acceleration coefficients. The AT&T Large Vocabulary De-
coder was used to generate lattices over the training and test sets
with a bigram language model based on a 83000 word vocabulary.
Lattice-based MMI [6, 19] was performed. The test set studied in
this section consisted of approx. 8400 utterances spoken byten
held-out speakers (approx. 25 hours of speech). Unsupervised
MLLR transforms for each of the test-set speakers were estimated
on a 1000 utterance subset of the test set. The baseline system
produced a test set lattices with WER of 45.6% and 22.3% LER.

We now analyze the performance of the lattice pinching pro-
cedure. Referring to Table 1, we can see that the oracle Lattice Er-
ror Rate increases due to pinching and pruning the test set lattices.
This is the inevitable limitation of this approach: focusing on small
decoding problems with the larger ASR problem inevitably limits
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Pruning #CPOC/ #MAPERR/ Segment Sets
Threshold #CPERR #MAPCOR Types Tokens

0.00 14.30 0.24 22 7324
0.05 4.7 0.64 26 8022
0.10 3.3 0.92 26 6860
0.20 3.2 1.17 17 3831
0.30 4.2 1.15 6 1405
0.40 11.0 1.04 2 337
0.50 - - 0 0

Table 2. Ratio of #CPOC/#CPERR segments and
#MAPERR/#MAPCOR segments for the confusion pairs ob-
served at least 100 times in the 25 hour test set.

the gains available over the baseline system. Based on thesere-
sults we selected a pruning theshold of 0.3, since we are interested
in finding binary classification problems. All non-binary segment
sets are pruned back to the MAP hypothesis. We also restricted
our attention to those confusion pairs observed in the test data at
least 100 times. The reason for doing this is that we wished tobe
able to measure the performance of the individual binary classi-
fiers we trained; for each classifier we have a test set of at least
100 instances. This is not a necessary limitation, however,and if
we were more interested in overall WER reduction and less inter-
ested in assessing the quality of the novel classifiers, we would
have chosen more pairs. Referring to Figure 1 d, only these fre-
quently occurring confusion pairs are retained, and all others are
pruned back to the baseline hypothesis.

The process so far is unsupervised. To further analyze the con-
fusion pairs, we Levenshtein-align the pinched lattices (Fig 1 d) to
the truth (Fig 1 e). We first count the number of Confusion Pair
Errors (CPERR), defined as confusion pairs that don’t contain the
truth. For example, in Fig. 1 d, (A:17, J:17) is classified as CPERR
since it does not contain the true word ‘K’; the other sets areclas-
sified as Confusion Pair Oracle Correct (CPOC). Within the CPOC
segments we can distinguish those in which the MAP path agrees
with the oracle path (MAPCOR) and those in which the MAP path
is in error (MAPERR). In Fig. 1, d the pair (V:5, B:5) is classi-
fied as MAPERR, and the pairs (OH:23, 4:23) and (A:7, 8:7) are
MAPCOR; both these sets are CPOC.

We further process the pinched lattices constructed from the
frequently occurring confusion pairs. We renormalize these lat-
tices to define the posterior distribution over these binaryconfu-
sion pairs, and again apply a posterior-based pruning to these in-
stances of the confusion pairs. The results are as reported in Ta-
ble 2. At a pruning threshold of 0.4, the surviving confusionpairs
are high quality: the CPERR pairs occur far less frequently than
CPOC pairs; and within these the the MAPERR count is about
equal to the MAPCOR count, so about half the MAP hypotheses
are incorrect. Unfortunately, there are only two distinct confusion
pairs and pruning eliminates all but 337 instances of them. In the
subsequent experiments, we prune at a threshold of 0.1. At this
level, we still have three times as many CPOC pairs as CPOERR,
the system is still making errors roughly half the time (MAPERR
≈ MAPCOR), and we have a diverse test set of 6860 observa-
tions of 26 distinct confusion pairs. Since we are specifically in-
terested in acoustic modeling, we discard confusion pairs consist-
ing of homonyms only; this leaves us with 2991 instances of 21
confusion pairs.

2.1. Support Vector Machines for LVCSR SubProblems

We now review our approach to building SVMs for these confusion
pairs. We begin by training special purpose, whole-word HMMs
for the words in the confusion pairs. We next clone these whole-
word models for the confusion pairs, e.g. the model for the word
‘A’ is replicated so that A:17 and A:7 are two different whole-
word HMMs. For example, to train the models for the confusion
pair (A:7, 8:7), an acoustic training subset is created by extracting
all the acoustic segments for ‘A’ and ‘8’ from the training data.
MMI is then used to further train the models A:7 and 8:7 over this
training subset. This allows to accumulate statistics overdifferent
recognition problems and thus create specialized decodersfrom
specialized training sets.

To train SVMs for the binary confusion pairs, we use the score-
space approach developed by Smith and Gales [20, 21, 16]. Statis-
tics derived from the HMM likelihoods are used to transform a
variable-length sequence into a static fixed-dimensional represen-
tation which can be used in SVM training and classification; the di-
mension of the features to be classified is derived from the number
of parameters in each HMM and not from the length of the speech
segment. Our choice of this approach was driven mainly by ex-
pedience; using MMI-trained whole word models to extract statis-
tics may indeed confer modeling advantages in that the statistics
are generated by models tuned to the specific classification prob-
lem. However, alternative approaches based on monophone mod-
els, rather than word models, can also be used (M. Gales, personal
communication), which may be particularly useful if data sparsity
is an issue. This approach avoids the need to generate lattices over
the training set; MMI over confusion pairs can be performed sim-
ply by using two version of the transcriptions that differ bythe
word in question. All training statistics over confusion pairs can
be obtained using Baum Welch. Following the selection criteria as
explained, we chose 21 confusion pairs to study. On average,0.58
hours of speech was selected as a training set for each confusion
pair. TheGiniSVM toolkit [22] was used to train classifiers based
on mean and likelihood-ratio scores derived from the MMI trained
word HMMs; details are provided in [17].

As discussed, selecting the test set to include at least 100 in-
stances of each confusion pair allowed us to make meaningful
comparisons of the performance of the SVM trained for each pair
to the MAP baseline performance. We found that performance
relative to the MAP baseline is mixed; there are not consistent im-
provements due to using the SVM alone. However the lattice-to-
string alignment procedure is carefully designed so that the com-
plete original paths and their likelihoods are retained throughout
pinching and pruning. We can thus derive reliable posteriors over
the remaining baseline hypotheses and perform hypothesis com-
bination. To combine the SVM and MAP hypotheses, a posterior
distribution over the SVM decisions was estimated by logistic re-
gression [22].

This associates a confidence (estimated likelihood of being
correct) with each SVM choice. For a particular instance of a
confusion pair with words(w1, w2), let ph(w) be the MAP poste-
rior over the pinched lattices, andps(w) be the SVM confidence
in each decision. A simple linear interpolation with weighting λ

gives a combined likelihood over the word pair. Withλ = 0.5, the
error count decreases in 18 of the 21 pairs. The influence of these
reductions on the overall WER over the complete test set is neces-
sarily limited, as already discussed. Under the MAP-SVM combi-
nation system, the baseline MAP WER is reduced from 45.6% to
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45.5%. However small, these gains are statistically significant and
stable with respect toλ: we obtained this performance improve-
ment forλ = 0.4, 0.5, 0.6, and0.7, and in all instances the sig-
nificance test p-values [23] were less than 0.001, so we can claim
improvement with great confidence. These gains are small from
the point of view of improving an LVCSR system. However, from
the point of view of validating our proposed SVM modeling ap-
proach, we can simultaneously claim significant improvements on
both a small vocabulary recognition problem and a LVCSR system
incorporating MMI, MLLR speaker adaptation and other stateof
the art techniques. We also offer this example to show that, if the
underlying experiments are carefully constructed, even novel tech-
niques can be applied to LVCSR problems even in the early stages
of their development.

3. MINIMUM BAYES RISK PARAMETER ESTIMATION

Risk-based parameter estimation procedures attempt to minimize
the expected risk over the training set. Given a transcribeddatabase
{W̄ ,O}, the estimation objective is

θ
∗ = argmin

θ

R(W̄ ,W; θ) (4)

whereR(W̄ ,W; θ) =
P

W ′∈W
l(W̄ , W ′)P (W ′|O; θ) .

W is taken to be a set of hypotheses being considered as al-
ternatives to the truth̄W , and we assume that their distance to the
correct transcriptionW̄ is measured by the string edit or Leven-
stein distancel(W̄ , W ) associated with Word Error Rate (WER).

The estimation problem hinges on determining the contribu-
tion to the overall risk of each hypothesisW ′ in W. If a relatively
likely hypothesisW ′ differs significantly fromW̄ as measured
by l(W̄ , W ′), it will add substantially to the overall risk. Thus a
successful estimation strategy is one that moves probability mass
towards those hypotheses that are close to the reference while re-
ducing the likelihood of those hypotheses that are far away.

While the loss functionl(W̄ , W ′) and the likelihood under the
current model parameters dominate the overall risk,W also plays
an important role in that, since the risk is measured overW, it must
provide a representative sample of hypotheses that are bothlikely
and error-full. IfW is not chosen well, the risk measurements will
be biased. In particular there is a danger of underestimating the
risk.

Kaiseret al. [24] have shown how the Extended Baum Welch [25]
algorithm can be applied to obtain a risk-minimizing variant of the
MMI re-estimation procedure for the parameters of state-dependent
Gaussian observation distributions, as shown for the Gaussian means

µ̄s =

P

W ′∈W

K(W ′,W; θ)
P

τ
γs(τ ; W ′)o(τ ) + Dsµs

P

W ′∈W

K(W ′,W; θ)
P

τ
γs(τ ;W ′) + Ds

(5)

whereK(W ′,W; θ) is computed as

[
X

W ′′∈W

P (W ′′|O; θ)l(W̄ , W
′′) − l(W̄ , W

′)] P (W ′|O; θ)

The quantityK(W ′,W; θ) determines the sensitivity of the over-
all risk to the contribution of each hypothesisW ′. The relationship
to the MMI procedure is obvious: for the 0/1 loss function, itre-
duces to the usual MMI update relationship. Kaiser et al. demon-
strated that this procedure can be used over N-Best lists of com-
peting hypotheses. However, Equation 5 is not easily implemented

over lattices, which limits its usefulness in LVCSR tasks, where
the N-Best lists would have to be exceedingly deep.

The difficulty is that the terml(W̄ , W ′) in K(W ′,W; θ) must
be found for allW ′ ∈ W. If l(W̄ , W ′) was a likelihood based
quantity, computation would be straightforward, but sincethe loss
is based on the Levenshtein distance, the computation must be
done for each complete path through the lattice. Fortuitously, this
is exactly the computation that is performed by lattice-to-string
alignment. That procedure produces a new lattice in which each
path is marked with the information needed to align it to the ref-
erence stringW̄ . This information is preserved through lattice
pinching and pruning, and results in aninduced loss function lI(W̄ , W ′).
We refer to it as induced by the lattice pinching because the opti-
mum alignment between̄W andW ′ may be not be allowed within
the pinched latticeW̃, e.g. Fig 1a allows more diverse alignments
than Fig 1d. HencelI only approximatesl. But it allows us to
perform estimation under the following criterion

θ
∗ = argmin

θ

RI(W̄ ,W; θ) (6)

whereRI(W̄ ,W; θ) =
P

W ′∈W̃
lI(W̄ , W ′)P (W ′|O; θ) .

By controlling the amount of pruning performed after lattice
alignment, the size of the pinched latticẽW can be restricted. This
allows us to expand the pinched lattice into a reasonable-sized N-
Best list, with alignment costslI(W̄ , W ′), so that the update pro-
cedure of Kasieret al. can be performed in LVCSR. We refer to
this procedure asPinched Lattice Minimum Bayes Risk Discrim-
inative Training (PLMBRDT). Over the MALACH Czech ASR
training set described earlier, lattices were generated using the
baseline MMI system and lattice-to-string alignment with respect
to the reference transcription was performed. Lattice segmenta-
tion was done, focusing again on the error pairs that occurred 100
times or more; this yielded 117 confusion pairs observed a total of
48,302 times in training.

For every word in the reference hypotheses there was an av-
erage of 0.13 confusion pairs. As a result, after pinching, not all
lattices contained confusion pairs; put another way, the induced
risk over these lattices was zero. These utterances were therefore
discarded from training, reducing the training set from 62.4 hours
to 52.4 hours of speech. The remaining pinched lattices wereex-
panded into N-Best lists, with an average depth of 36.5 hypothe-
ses. On a 2 hour subset of the full 25 hour test set, the ML baseline
performance of the system was 44.3% WER. This was reduced to
41.5% by five MMI iterations, and was further reduced to 41.1%
by five PLMBRDT iterations (with p-value 0.013 relative to the
MMI hypotheses).

4. DISCUSSION

Lattice segmentation and Pinched Lattice Minimum Bayes Risk
Discriminative Training have been discussed as two procedures
based on HMMs and at the same time depart significantly from
the original HMM framework. These techniques evolved from
techniques intended to minimize risk, rather than maximizelikeli-
hood, in both estimation and decoding. Lattice segmentation can
be used to define recognition subproblems within LVCSR tasks.
‘Defining a subproblem’ implies more than just selecting a small
recognition task such as a particular binary word choice: wesug-
gest a procedure to identify which particular confusion sets in the
test set should be selected as candidates for correction; wesug-
gest how training data might be collected to train models to solve
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these problems; and we show how the final simple classifier can
be reincorporated into the overall large vocabulary ASR problem.
The overall framework is still under development, but our studies
of Support Vector Machines demonstrate that novel techniques can
be applied to LVCSR problems even in the early stages of theirde-
velopment. There are also interesting issues in training and test set
sizes. For reasons of statistical significance, large test sets seem
inevitable in working on small LVCSR subproblems. On the other
hand, the training set is reduced in these LVCSR subproblems,
and in PLMBRDT, as subsets of the training set are selected to
solve specific problems. Selecting small training sets for LVCSR
subproblems offers practical advantages in developing newtech-
niques, and it may in addition provide modeling advantage inthat
the sets contain exactly those training instances over which the
baseline HMM is weak. The determination of training set size
can be made more rigorous, in that it follows from the training
objective function, through the use of lattice pinching andprun-
ing to define an induced loss function over the training set lattices.
Training set utterances which incur no risk under the induced loss
function are simply not considered by PLMBRDT, with a resulting
reduction in the original training set. Apart from these somewhat
abstract considerations, the overall approach offers a route for the
the development of novel modeling and decoding procedures to
improve HMM-based ASR systems.
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