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SUMMARY Minimum Bayes risk estimation and decoding
strategies based on lattice segmentation techniques can be used
to refine large vocabulary continuous speech recognition systems
through the estimation of the parameters of the underlying hid-
den Markov models and through the identification of smaller
recognition tasks which provides the opportunity to incorporate
novel modeling and decoding procedures in LVCSR. These tech-
niques are discussed in the context of going ‘beyond HMMs’,
showing in particular that this process of subproblem identifica-
tion makes it possible to train and apply small-domain binary
pattern classifiers, such as Support Vector Machines, to large vo-
cabulary continuous speech recognition.
key words:

1. Introduction

The use of statistical methods now dominates the the-
ory and practice of automatic speech processing and
recognition. These methods are predominantly based
on Hidden Markov Models and their estimation and
decoding algorithms. The underlying statistical model
is a joint distribution P (O, W ; θ) defined over an acous-
tic observation sequence O and a word sequence W [1],
[2]. If the likelihood under this distribution can be com-
puted, decision theory provides the form of the recog-
nizer, typically : Ŵ = argmaxW P (W |O; θ).

The goal of modeling is to support decoding,
and assumptions about statistical independence are
made so that the search can be carried out. The
now-standard generative modeling assumption is that
the joint probability distribution can be factored into
acoustic and language models:

P (O, W ; θ) = P (O|W ; θ)P (W ; θ)

where both components are modeled directly through
parametric distributions. In addition to leading to effi-
cient search procedures, the parameters of these gen-
erative models can be estimated over the available
training data, which typically consists of a transcribed
acoustic training set {O, W̄}. The conditional inde-
pendence assumptions that separate the acoustic model
from the language model make it possible to perform
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maximum likelihood (ML) estimation of the parame-
ters of each; argmaxθ P (O, W̄ ; θ) decomposes into the
two separate modeling problems argmaxθA

P (O|W̄ ; θA)
and argmaxθL

P (W̄ ; θL).
In large vocabulary continuous speech recognition

tasks, much is expected of both the acoustic and lan-
guage models. Speakers are allowed to speak freely and
say whatever they wish in whatever manner they chose.
Consequently the language model must be able to as-
sign likelihood to any word sequence that might be ut-
tered by a speaker, and the acoustic model must be
designed so that it can provide an acoustic score to any
acoustic observation for any hypothesis allowed under
the language model. In practice, the scope of the prob-
lem is defined by domain-specific collections of acoustic
and language model training data. This leads to the
all-important issue of generalization. Both the acous-
tic and language model components are trained with
as much in-domain data as can be obtained, and this is
done with the goal of building models that can general-
ize from the training data to unseen test data. Two sets
of procedures play a crucial role in this. Baum Welch
reestimation, and its Viterbi variants, make it possible
to train on the large amounts of data needed to en-
sure generalization. Techniques such as triphone state
clustering [3], Gaussian mixture splitting, and back-
off strategies in n-gram language models, control the
growth of model complexity during training [4]. Train-
ing using large amounts of data and controlling model
complexity are crucial to achieve generalization.

The choice of model architecture is also driven by
the need for generalization. The goal of speech recog-
nition is to generate transcriptions in the writing sys-
tem used by speakers of a language, and the natural
units of transcription are orthographic. However the
need for generalization usually demands the use of sub-
word acoustic models. These allow the speech sounds
of frequently occurring words and word combinations
to be used to construct models that can be used for
less frequently observed words and acoustic contexts.
If it were possible to model word sequences directly, we
would; it is arguably the need to construct hierarchi-
cal models based on sub-word components that leads
to the inclusion of phonetics, syntax, and morphology
in ASR.

Summarizing the discussion thus far, the model-
ing approach is to build a single system via maximum
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likelihood parameter estimation algorithms and per-
form recognition via MAP decoding procedures. Al-
gorithms and architectures are favored that are consis-
tent with the need to achieve generalization through
ever larger training sets and more complex hierarchical
models. This is why HMMs are pervasive. HMMs are
often described by their topology and details, e.g. a tri-
phone model with left-to-right transitions and Gaussian
mixture observation distributions, and from this view
HMMs are easy to criticize since their shortcomings
as descriptive models are plainly obvious. But a more
holistic (albeit still simplistic) view is that HMMs are
also the conditional independence assumptions needed
to implement efficient estimation and decoding proce-
dures using dynamic programming; these are the as-
sumptions that make it possible to perform estimation
and decoding over large amounts of data. Abandon-
ing these efficient algorithms to move ‘beyond HMMs’
therefore has risks. Research in new models and al-
gorithms is typically done on small problems for vari-
ous practical reasons. Within the statistical modeling
framework, unless there is the promise of eventually
performing estimation over large amounts of data, and
thus achieve generalization, there is little hope of sup-
planting HMMs completely.

The discussion thus far ignores the extent to which
mainstream ASR research has already moved beyond
the original HMM formalism. Speaker adaptation [5]
and discriminative training [6] are now ubiquitous, and
system combination techniques such as ROVER [7]
are applied whenever possible. These approaches are
usually based on ML-trained HMMs, and now that
they have entered the research mainstream, the extent
to which they themselves go beyond the basic HMM
framework is taken for granted. Adaptation and nor-
malization will not be discussed in this paper other
than to comment that they work to refine a carefully
trained speaker independent ASR system and in the
process reduce its ability to generalize to new speakers,
that had been so carefully built into the system in the
first place. MMI by definition departs somewhat from
the generative ML framework. One view of the algo-
rithm is that discriminative training sharpens up the
basic HMMs, by using them to define a distribution
P (O|W̄ ; θ) which is optimized over the training set. Of
course, the underlying HMMs are retained and used to
compute the posterior distribution using Bayes rule. A
different view of the process is one in which the gener-
ative model is completely undone and a new model is
constructed from its components which are estimated
under a maximum likelihood criterion [8], [9]. MMI also
departs from the HMM framework in that it implicitly
discards training data: training utterances do not con-
tribute to MMI when the most likely hypothesis is both
correct but strongly dominant. This occurs implicitly
and over whole utterances: the entire sentence hypoth-
esis has to be correct and dominant before this effect is

observed. However despite these departures, the HMM
model architecture remains and standard MAP decod-
ing can still be performed with the ‘proper’ integration
of the acoustic and language models. But the point re-
mains that the MMI formulation requires abandoning
either the ML estimation or the generative modeling
framework. A similar point can be made with respect
to system combination techniques which consider re-
placing the most likely hypotheses generated by one
model with a synthesis of less likely hypotheses from
multiple models. This essentially abandons the origi-
nal idea that there is a single optimum model that can
be trained and used in ASR.

In summary, in one way or another, speaker adap-
tation, MMI, and system combination depart from the
maximum likelihood generative modeling framework
based on a single general model estimated with all avail-
able training data. What remains from the underlying
modeling framework is that the entirety of the training
data continues to define the scope of the recognition
problem. The overall goal is still to train sets of mod-
els capable of tackling the entire recognition task. The
issue that will be discussed in this paper is whether the
need to rely on models capable of this extreme gener-
ality works against the ability to discriminate. Models
and algorithms selected based on how well they work
well ‘in general’ may fail in particular instances; con-
versely, modeling approaches which may be well-suited
for making certain specific distinctions are difficult to
incorporate. Furthermore, it can be difficult even to
identify the instances in which the general purpose
models are failing and may need to be helped.

The remainder of the paper will discuss modeling
techniques meant to identify small vocabulary recog-
nition problems within LVCSR tasks and to provide a
theoretical and practical framework for incorporating
novel modeling techniques into LVCSR. This approach
merges the techniques of system combination and dis-
criminative training. One of the key goals of this work
is to make it possible to retain the good performance
of state of the art HMM recognition systems when try-
ing out new ideas. The approach allows the modeler to
specify the size of the problems to be tackled. These can
then be solved with one set of models or with special-
ized models, and these models can be of any complexity
- even very simple binary classifiers can be used. The
point is that the complexity of the models being devel-
oped need not be driven by the entire LVCSR problem.
Of course, there is a trade-off. As will be discussed, the
gains with respect to the LVCSR baseline inevitably
decrease as smaller and smaller subproblems are sin-
gled out. There are several practical benefits. The first
is that it is possible to assess the value of a particu-
lar novel modeling scheme. Suppose a novel classifier
is proposed to make specific types of distinctions, say
between certain classes of words. This procedure can
determine how many times the baseline system itself
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makes errors over those classes, and can also provide
an indication of how much gain over the baseline the
novel classifier can optimistically be expected to yield.
A second consequence is that since solving small prob-
lems tends only to yield small gains, statistical signifi-
cance becomes an issue. Unusually large test sets may
be required to ensure that small gains can be trusted
as an indication that improvements are real.

Another benefit of this approach relative to de-
veloping new techniques is that by focusing on small,
independent problems the size of the training data rel-
evant to each problem can be greatly reduced. This
has multiple benefits. Training data is selected that is
particularly relevant to the classification problem: the
specialized classifiers can be estimated over regions of
the training set where the baseline HMM itself fails to
make the correct distinction. This leads to more spe-
cialized models. As a practical consideration, this also
makes it easier to train novel architectures using algo-
rithms that otherwise might be unable to make use of
all the entire training set. The next section discusses
how lattice segmentation techniques developed origi-
nally Minimum Bayes Risk decoding procedures can
be used to support the development of novel acoustic
modeling and recognition within LVCSR tasks.

2. Lattice Segmentation and the Selection of

Recognition Subproblems

Minimum Bayes Risk decoders [10]–[12] find a sentence
hypothesis with the least expected error under a loss
function as

Ŵ = argmin
W∈W

∑

W ′∈W

l(W, W ′)P (W ′|O; θ). (1)

The motivation for the approach is that l(·, ·) describes
a task performance metric, such as the Levenshtein dis-
tance associated with Word Error Rate, so that models
estimated under some other criterion can be ‘tuned’ to
a task by modifying the decoding procedure [13]. Al-
though this formulation may appear overly formal, it
can be shown that ASR rescoring and system combina-
tion techniques such as ROVER [7] can be formulated
as MBR decoding procedures [14].

This is a search problem in which W are N-Best
lists or lattices that incorporate P (W ′|O) as a poste-
rior distribution on word strings. For each hypothesis
W ∈ W , the risk is computed

R(W, W ; θ) =
∑

W ′∈W

l(W, W ′) P (W ′|O; θ) (2)

and the hypothesis with the least risk is selected

Ŵ = argmin
W∈W

R(W, W ; θ) . (3)

Efficient algorithms have been developed to compute
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Fig. 1 Lattice Segmentation. a: First-pass lattice with MAP
hypothesis in bold; b: Lattice to string alignment under the Lev-
enshtein distance to the MAP path; c: Segment sets that arise
from the alignment; d: Refined Search Space consisting of binary
segment sets found by pruning segment sets produced in Step c.
Word hypotheses are tagged so specialized models can be used in
lattice rescoring. e: Correct transcription used to measured the
quality of the selected pairs.

the risk of a hypothesis W under the Levenshtein loss
function [15]. Since it is straightforward to compute
likelihoods such as P (W ′|O; θ) over ASR lattices, the
key is an efficient lattice-to-string alignment algorithm
to find and represent the costs l(W, W ′) for all W ′ in
any lattice W . In addition to making the MBR search
problem feasible under certain loss functions, we use
these algorithms to segment the first-pass ASR lattices.
The alignment algorithm is reviewed briefly in the fol-
lowing section within the context of identifying recog-
nition subproblems.

2.1 Recognition Subproblem Selection and Analysis

We now summarize recent studies of lattice segmen-
tation in discriminative training [16] and applications
of Support Vector Machines in LVCSR rescoring [17],
[18]. Lattice segmentation converts a first-pass lattice
into a sequence of smaller sub-lattices through a Leven-
shtein alignment of the lattice to a reference path [15].
Here, test set lattices (Fig. 1, a) are aligned to the
primary hypothesis so that word sequences from the
lattice are aligned with words in the primary hypothe-
sis (Fig. 1, b). This produces segment sets, which are
groups of substrings from the lattice identified as alter-
natives to words in the primary hypothesis (Fig. 1, c).

These segment sets define the LVCSR subproblems
that can be considered in subsequent decoding passes.
However, not all segment sets are of equal value in im-
proving the baseline. In some segment sets, the refer-



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

ence (MAP) hypothesis is likely to be correct - ideally
these should be left alone. In others, the segment set
does not contain the truth as one of the alternatives
- these should be ignored. The ideal problems to at-
tack are those defined by segment sets within which the
MAP path is wrong and the correct path is available as
an alternative. An additional concern is that, if special-
ized models are to be trained, the selected subproblems
should also appear frequently enough in training data
so that models can be reliably estimated. Ideally, this
should all be carried out with a minimum of supervi-
sion.

An unsupervised approach based on the posterior
scores over lattice segment sets has been developed [18].
Segment sets are identified as described by lattice-to-
string alignment under the Levenshtein distance, but
the joint acoustic and language model scores from the
lattice are retained and can be used to define posterior
distributions over the hypotheses in the segment sets,
and by extension over the portions of the segment sets
themselves. This allows us to prune the segment sets
to finally obtain confusion pairs (Fig. 1, d).

The selection process summarized above and de-
picted in Figure 1 is referred to as lattice pinching. It
consists of consecutive alignment, segmentation, and
pruning steps to identify segment sets. As mentioned,
the process is effective only to the extent that it iden-
tifies weaknesses in the primary hypothesis and offers
useful alternative hypotheses.

We have evaluated our approach in the MALACH
spontaneous Czech conversational domain [19]. The
system consists of speaker independent continuous
mixture density, tied state, cross-word, gender-
independent, triphone HMMs trained with HTK using
65 hours of transcribed speech (24065 utterances). The
speech was parameterized into 39-dimensional, MFCC
coefficients, with delta and acceleration coefficients.
The AT&T Large Vocabulary Decoder was used to gen-
erate lattices over the training and test sets with a bi-
gram language model based on a 83000 word vocabu-
lary. Lattice-based MMI [6], [20] was performed. The
test set studied in this section consisted of approx. 8400
utterances spoken by ten held-out speakers (approx. 25
hours of speech). Unsupervised MLLR transforms for
each of the test-set speakers were estimated on a 1000
utterance subset of the test set. The baseline system
produced a test set lattices with WER of 45.6% and
22.3% Lattice Error Rate (LER).

We now analyze the performance of the lattice
pinching procedure. Referring to Table 1, we can see
that the oracle Lattice Error Rate increases due to
pinching and pruning the test set lattices. This is the
inevitable limitation of this approach: focusing on small
decoding problems with the larger ASR problem in-
evitably limits the gains available over the baseline sys-
tem. We first prune the original lattices so that lattice-
to-string alignment is more easily done; this increases

Pruning Avg. # Hyps. / Segment Sets
Threshold LER Segment Set Types Tokens

0.00 27.3 11.65 94029 1393099
0.05 35.3 2.82 49837 212852
0.10 37.9 2.35 35278 134252
0.20 41.1 2.06 17132 63267
0.30 43.2 2.00 7288 26913
0.40 44.7 2.00 2249 7930
0.50 45.6 - 0 0

Table 1 Segment Set Analysis Over A 25 Hour Test Set. The
average number of hypotheses per segment set, number of distinct
segment sets, and total number of segment sets after posterior-
based pruning as described in Section 2.

the LER from 22.3% to 27.3%. Subsequent pruning as
reported in Table 1 is performed relative to the link
posterior scores of the MAP alternatives within each
segment set; high pruning thresholds discard low confi-
dence alternative word hypotheses. Note that for prun-
ing thresholds above 1.0, there tends to be only two
hypotheses per segment set. LER continues to increase
as pruning increases, since many segment sets are com-
pletely pruned away, leaving only the MAP hypothesis.

Based on these results we selected a pruning thesh-
old of 0.3, since we are interested in finding binary
classification problems. All non-binary segment sets
are pruned back to the MAP hypothesis. We also re-
stricted our attention to those confusion pairs observed
in the test data at least 100 times. The reason for doing
this is that we wished to be able to measure the per-
formance of the individual binary classifiers we trained;
for each classifier we have a test set of at least 100 in-
stances. This is not a necessary limitation, however,
and if we were more interested in overall WER reduc-
tion and less interested in assessing the quality of the
novel classifiers, we would have chosen more pairs. Re-
ferring to Figure 1 d, only these frequently occurring
confusion pairs are retained, and all others are pruned
back to the baseline hypothesis.

The process so far is unsupervised. To further
analyze the confusion pairs, we Levenshtein-align the
pinched lattices (Fig 1 d) to the truth (Fig 1 e). We first
count the number of Confusion Pair Errors (CPERR),
defined as confusion pairs that do not contain the truth.
For example, in Fig. 1 d, (A:17, J:17) is classified as
CPERR since it does not contain the true word ‘K’;
the other sets are classified as Confusion Pair Oracle
Correct (CPOC). Within the CPOC segments we can
distinguish those in which the MAP path agrees with
the oracle path (MAPCOR) and those in which the
MAP path is in error (MAPERR). In Fig. 1, d the
pair (V:5, B:5) is classified as MAPERR, and the pairs
(OH:23, 4:23) and (A:7, 8:7) are MAPCOR; both these
sets are CPOC.

We further process the pinched lattices constructed
from the frequently occurring confusion pairs. We
renormalize these lattices to define the posterior distri-
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Pruning #CPOC/ #MAPERR/ Segment Sets
Threshold #CPERR #MAPCOR Types Tokens

0.00 14.30 0.24 22 7324
0.05 4.7 0.64 26 8022
0.10 3.3 0.92 26 6860
0.20 3.2 1.17 17 3831
0.30 4.2 1.15 6 1405
0.40 11.0 1.04 2 337
0.50 - - 0 0

Table 2 Ratio of #CPOC/#CPERR segments and
#MAPERR/#MAPCOR segments for the confusion pairs ob-
served at least 100 times in the 25 hour test set.

bution over these binary confusion pairs, and again ap-
ply a posterior-based pruning to these instances of the
confusion pairs. The results are as reported in Table 2.
At a pruning threshold of 0.4, the surviving confusion
pairs are high quality: the CPERR pairs occur far less
frequently than CPOC pairs; and within these the the
MAPERR count is about equal to the MAPCOR count,
so about half the MAP hypotheses are incorrect. Un-
fortunately, there are only two distinct confusion pairs
and pruning eliminates all but 337 instances of them.
In the subsequent experiments, we prune at a threshold
of 0.1. At this level, we still have three times as many
CPOC pairs as CPOERR, the system is still making
errors roughly half the time (MAPERR ≈ MAPCOR),
and we have a diverse test set of 6860 observations of
26 distinct confusion pairs. Since we are specifically
interested in acoustic modeling, we discard confusion
pairs consisting of homonyms only; this leaves us with
2991 instances of 21 confusion pairs.

2.2 Support Vector Machines for LVCSR Subprob-
lems

We now review our approach to building SVMs for these
confusion pairs identified by the LVCSR system. We
begin by training special purpose, whole-word HMMs
for the words in the confusion pairs; these will com-
plement the cross-word triphone acoustic HMMs used
in the baseline LVCSR system. We next clone these
whole-word models for the confusion pairs, e.g. the
model for the word ‘A’ is replicated so that A:17 and
A:7 are two different whole-word HMMs. For example,
to train the models for the confusion pair (A:7, 8:7),
an acoustic training subset is created by extracting all
the acoustic segments for ‘A’ and ‘8’ from the train-
ing data. MMI is then used to further train the models
A:7 and 8:7 over this training subset. This allows to ac-
cumulate statistics over different recognition problems
and thus create specialized decoders from specialized
training sets.

To train SVMs for the binary confusion pairs, we
use the score-space approach developed by Smith and
Gales [17], [21], [22]. Statistics derived from the HMM
likelihoods are used to transform a variable-length se-

quence into a static fixed-dimensional representation
which can be used in SVM training and classification;
the dimension of the features to be classified is derived
from the number of parameters in each whole-word
HMM and not from the length of the speech segment.

Our choice of this approach was driven mainly
by expedience; using MMI-trained whole word models
to extract statistics may indeed confer modeling ad-
vantages in that the statistics are generated by mod-
els tuned to the specific binary classification problem.
However, alternative approaches based on monophone
models, rather than word models, can also be used (M.
Gales, personal communication), which may be partic-
ularly useful if data sparsity is an issue. This approach
avoids the need to generate lattices over the training
set; MMI over confusion pairs can be performed simply
by using two version of the transcriptions that differ by
the word in question. All training statistics over con-
fusion pairs can be obtained using Baum Welch. Fol-
lowing the selection criteria as explained, we chose 21
confusion pairs to study. On average, 0.58 hours of
speech was selected as a training set for each confu-
sion pair. The GiniSVM toolkit [23] was used to train
classifiers based on mean and likelihood-ratio scores de-
rived from the MMI trained word HMMs; details are
provided in [18].

The objective is to apply these specialized SVM
classifiers in an unsupervised manner to resolve binary
word confusions found in lattices generated by the base-
line LVCSR system. As discussed, selecting the test set
to include at least 100 instances of each confusion pair
allowed us to make meaningful comparisons of the per-
formance of the SVM trained for each pair to the MAP
baseline performance. We found that performance rela-
tive to the MAP baseline is mixed; there are not consis-
tent improvements due to using the SVM alone. How-
ever the lattice-to-string alignment procedure is care-
fully designed so that the complete original paths and
their likelihoods are retained throughout pinching and
pruning. We can thus derive reliable posteriors over the
remaining baseline hypotheses and perform hypothesis
combination. To combine the SVM and MAP hypothe-
ses, a posterior distribution over the SVM decisions was
estimated by logistic regression [23].

This associates a confidence (estimated likelihood
of being correct) with each SVM choice. For a particu-
lar instance of a confusion pair with words (w1, w2), let
ph(w) be the MAP posterior over the pinched lattices,
and ps(w) be the SVM confidence in each decision.
A simple linear interpolation with weighting λ gives a
combined likelihood over the word pair. With λ = 0.5,
the error count decreases in 18 of the 21 pairs. The in-
fluence of these reductions on the overall WER over the
complete test set is necessarily limited, as already dis-
cussed. Under the MAP-SVM combination system, the
baseline MAP WER is reduced from 45.6% to 45.5%.
However small, these gains are statistically significant
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and stable with respect to λ: we obtained this perfor-
mance improvement for λ = 0.4, 0.5, 0.6, and 0.7, and
in all instances the significance test p-values [24] were
less than 0.001, so we can claim improvement with great
confidence. These gains are small from the point of
view of improving an LVCSR system. However, from
the point of view of validating our proposed SVM mod-
eling approach, we can simultaneously claim significant
improvements on both a small vocabulary recognition
problem and an LVCSR system incorporating MMI,
MLLR speaker adaptation and other state of the art
techniques. We also offer this example to show that, if
the underlying experiments are carefully constructed,
even novel techniques can be applied to LVCSR prob-
lems even in the early stages of their development.

3. Minimum Bayes Risk Parameter Estimation

Risk-based parameter estimation procedures attempt
to minimize the expected risk over the training set.
Given a transcribed database {W̄ ,O}, the estimation
objective is

θ∗ = argmin
θ

R(W̄ ,W ; θ) (4)

where

R(W̄ ,W ; θ) =
∑

W ′∈W

l(W̄ , W ′)P (W ′|O; θ) .

W is taken to be a set of hypotheses being consid-
ered as alternatives to the truth W̄ , and we assume that
their distance to the correct transcription W̄ is mea-
sured by the string edit or Levenstein distance l(W̄ , W )
associated with Word Error Rate (WER).

The estimation problem hinges on determining the
contribution to the overall risk of each hypothesis W ′

in W . If a relatively likely hypothesis W ′ differs signif-
icantly from W̄ as measured by l(W̄ , W ′), it will add
substantially to the overall risk. Thus a successful es-
timation strategy is one that moves probability mass
towards those hypotheses that are close to the refer-
ence while reducing the likelihood of those hypotheses
that are far away.

While the loss function l(W̄ , W ′) and the likeli-
hood under the current model parameters dominate the
overall risk, W also plays an important role in that,
since the risk is measured over W , it must provide a
representative sample of hypotheses that are both likely
and error-full. If W is not chosen well, the risk mea-
surements will be biased. In particular there is a danger
of underestimating the risk.

Kaiser et al. [25] have shown how the Extended
Baum Welch [26] algorithm can be applied to obtain a
risk-minimizing variant of the MMI re-estimation pro-
cedure for the parameters of state-dependent Gaussian
observation distributions, as shown for the Gaussian
means

µ̄s =

∑
W ′∈W

K(W ′,W ; θ)
∑

τ
γs(τ ; W ′)o(τ) + Dsµs

∑
W ′∈W

K(W ′,W ; θ)
∑

τ
γs(τ ; W ′) + Ds

(5)

where K(W ′,W ; θ) is computed as

[
∑

W ′′∈W

P (W ′′|O; θ)l(W̄ , W ′′) − l(W̄ , W ′)] P (W ′|O; θ).

Here, the γs(t; W
′) are the occupancy statistics associ-

ated with the sth Gaussian as found by the Forward-
Backward algorithm with respect to the hypothesis W ′.
The Ds are constants that arise directly from the for-
mulation of the Extended Baum Welch algorithm. As
discussed by Gopalakrishnan et al. [26] these constants
are set to some sufficiently large value to ensure in-
crease in the training objective function. We follow the
approach described by Woodland and Povey [6] in using
Gaussian-specific constants to ensure that convergence
is not overly slow.

The quantity K(W ′,W ; θ) determines the sensi-
tivity of the overall risk to the contribution of each
hypothesis W ′. The relationship to the MMI proce-
dure is readily apparent. For the 0/1 loss function,
Equation 5 reduces to the usual MMI update relation-
ship as derived as an Extended Baum Welch procedure.
This approach is also reminiscent of Minimum Classifi-
cation Error training [27] in that the aim is to improve
the modeling of correct hypotheses relative to erroneous
hypotheses. The difference is that, rather than select a
single most likely incorrect hypothesis (for example) as
the training alternative, a very large collection of hy-
potheses are considered under a weighting provided by
the K(W ′,W ; θ) statistics. This form of risk minimiza-
tion also differs from MCE in the use of the Extended
Baum Welch algorithm which provides a closed form
iterative parameter estimation procedure as an alter-
native to gradient based searches.

As was done with MMI estimation in small vo-
cabulary recognition tasks by Normandin [28], Kaiser
et al. [25] demonstrated that the statistics needed to
perform minimum Bayes risk estimation of HMM pa-
rameters can be found by the Forward-Backward proce-
dure over N-Best lists of competing hypotheses. How-
ever, Equation 5 is not easily implemented over lat-
tices, which limits its usefulness in LVCSR tasks, where
the N-Best lists would have to be exceedingly deep to
contain a significant portion of the likely, erroneous
hypothesis. The difficulty is that the term l(W̄ , W ′)
in K(W ′,W ; θ) must be found for all W ′ ∈ W . If
l(W̄ , W ′) was a likelihood based quantity, computation
would be straightforward, but since the loss is based
on the Levenshtein distance, the computation must be
done for each complete path through the lattice. For-
tuitously, this is exactly the computation that is per-
formed by lattice-to-string alignment. That procedure
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produces a new lattice in which each path is marked
with the information needed to align it to the reference
string W̄ . This information is preserved through lat-
tice pinching and pruning, and results in an induced loss

function lI(W̄ , W ′). We refer to it as induced by the lat-
tice pinching because the optimum alignment between
W̄ and W ′ may be not allowed within the pinched lat-
tice W̃, e.g. Fig 1a allows more diverse alignments than
Fig 1d. Hence lI only approximates l. But it allows us
to perform estimation under the following criterion

θ∗ = argmin
θ

RI(W̄ ,W ; θ) (6)

where

RI(W̄ ,W ; θ) =
∑

W ′∈W̃

lI(W̄ , W ′)P (W ′|O; θ) .

By controlling the amount of pruning performed
after lattice alignment, the size of the pinched lattice W̃
can be restricted. This allows us to expand the pinched
lattice into a reasonable-sized N-Best list, with align-
ment costs lI(W̄ , W ′), so that the update procedure of
Kasier et al. can be performed in LVCSR. We refer
to this procedure as Pinched Lattice Minimum Bayes

Risk Discriminative Training (PLMBRDT). Over the
MALACH Czech ASR training set described earlier,
lattices were generated using the baseline MMI system
and lattice-to-string alignment with respect to the ref-
erence transcription was performed. Lattice segmenta-
tion was done, focusing again on the (word level) er-
ror pairs that occurred 100 times or more; this yielded
117 confusion pairs observed a total of 48,302 times in
training.

For every word in the reference hypotheses there
was an average of 0.13 confusion pairs. As a result, after
pinching, not all lattices contained confusion pairs; put
another way, the induced risk over these lattices was
zero. These utterances were therefore discarded from
training, reducing the training set from 62.4 hours to
52.4 hours of speech. The remaining pinched lattices
were expanded into N-Best lists, with an average depth
of 36.5 hypotheses. On a 2 hour subset of the full 25
hour test set, the ML baseline performance of the sys-
tem was 44.3% WER. This was reduced to 41.5% by
five MMI iterations, and was further reduced to 41.1%
by five PLMBRDT iterations (with p-value 0.013 rela-
tive to the MMI hypotheses).

4. Discussion

Lattice segmentation and Pinched Lattice Minimum
Bayes Risk Discriminative Training have been discussed
as two procedures that are based on HMMs and at the
same time depart significantly from the original HMM
framework. These techniques evolved from techniques
intended to minimize risk, rather than maximize likeli-
hood, in ASR decoding. As modeling procedures, esti-

mation and decoding are obviously distinct tasks. How-
ever within this formulation the two problems are linked
through the calculation of empirical risk with respect
to a set of underlying HMMs. Since there is this com-
mon need to evaluate empirical risk, the distinct tasks
of MBR decoding and estimation can be carried out
efficiently using shared techniques of risk calculation.

Lattice segmentation can be used to define recogni-
tion subproblems within LVCSR tasks. ‘Defining a sub-
problem’ implies more than just selecting a small recog-
nition task such as a particular binary word choice: we
suggest a procedure to identify which particular confu-
sion sets in the test set should be selected as candidates
for correction; we suggest how training data might be
collected to train models to solve these problems; and
we show how the final simple classifier can be reincor-
porated into the overall large vocabulary ASR prob-
lem. The overall framework is still under development,
but our studies of Support Vector Machines demon-
strate that novel techniques can be applied to LVCSR
problems even in the early stages of their development.
There are also interesting issues in training and test
set sizes. For reasons of statistical significance, large
test sets seem inevitable in working on small LVCSR
subproblems. On the other hand, the training set is
reduced in these LVCSR subproblems, and in PLM-
BRDT, as subsets of the training set are selected to
solve specific problems. Selecting small training sets
for LVCSR subproblems offers practical advantages in
developing new techniques, and it may in addition pro-
vide modeling advantage in that the sets contain ex-
actly those training instances over which the baseline
HMM is weak. The determination of training set size
can be made more rigorous, in that it follows from the
training objective function, through the use of lattice
pinching and pruning to define an induced loss function
over the training set lattices. Training set utterances
which incur no risk under the induced loss function are
simply not considered by PLMBRDT, with a resulting
reduction in the original training set. Apart from these
somewhat abstract considerations, the overall approach
offers a route for the the development of novel modeling
and decoding procedures to improve HMM-based ASR
systems.
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