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ABSTRACT

Segmental Minimum Bayes Risk (SMBR) Decoding involves the
refinement of the search space into sequences of small sets of con-
fusable words. We describe the application of Support Vector Ma-
chines (SVMs) as discriminative models for the refined search
spaces. We show that SVMs, which in their basic formulation
are binary classifiers of fixed dimensional observations, can be
used for continuous speech recognition. We also study the use
of GiniSVMs, which is a variant of the basic SVM. On a small
vocabulary task, we show this two pass scheme outperforms MMI
trained HMMs. Using system combination we also obtain further
improvements over discriminatively trained HMMs.

1. INTRODUCTION

Support Vector Machines [1] are pattern recognizers that classify
data without making any assumptions about the underlying pro-
cess by which the observations were generated. In their basic
formulation SVMs are binary classifiers. Given a data sample to
be classified, the SVM will assign it as belonging to one of two
classes. In training an SVM each labeled data point is represented
as a real valued vector of fixed high dimension. The SVM is de-
fined by a hyperplane in this feature space that is constructed so
as to maximize a measure of the “margin” between two classes.
A new data sample is classified by the SVM according to the de-
cision boundary defined by the hyperplane. The location of the
hyperplane is usually determined by a small number of the train-
ing samples which are ideally those near the boundaries of the two
classes. As a consequence, SVMs are often observed to generalize
well in cases when training data is limited. It is also possible to
improve classification performance by transforming the raw data
into a higher dimensional feature space so that the two classes can
be more easily separated by a linear classifier. Due to these and
other beneficial properties, SVMs have been successfully used in
many pattern recognition tasks [2] [3]. In this paper, we take the
simple view that an SVM is a binary classifier of fixed-length data
vectors.

In speech recognition we would like to classify a variable length
sequence of fixed dimension patterns which are typically vectors
of acoustic spectral energy measurements. These raw observation
sequences can be expected neither to have fixed dimension nor to
belong to one of only two classes. Only the simplest of word or
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phrase recognition tasks can be described as binary classification
of fixed-duration sequences. If SVMs are to be employed in con-
tinuous ASR, their simple formulation as binary classifiers will
have to be overcome or circumvented.

Smith et al. [4] have developed score-spaces [5] to represent a
variable length sequence of acoustic vectors via fixed dimensional
vectors. This is done by using HMM s to find the likelihood of each
sequence to be classified and then computing the gradient of the
likelihood with respect to the HMM parameters. Since the HMMs
have a fixed number of parameters, this yields a fixed-dimension
feature to which the SVMs can be applied. It has the added benefit
that the features provided to the SVM can be derived from a well-
trained HMM recognizer. However, the SVM is still essentially a
binary classifier, so that this approach is still limited to the binary
classification of variable length sequences.

To apply SVMs beyond the two-class problem we employ an
approach to continuous speech recognition in which the recogni-
tion task is transformed into sequential, independent classification
tasks. Each of these sub-tasks will be a binary recognition prob-
lem in which the goal is to decide which of two words were spo-
ken. This yields a large but manageable sequence of binary de-
cision problems and SVMs will be trained and applied to each.
This is fundamentally an ASR rescoring approach. HMMs are
used to generate recognition lattices in the usual way, and these
lattices are post-processed to identify regions of acoustic confus-
ability in which the first-pass HMMs were unable to distinguish
between competing word hypotheses. The goal of this work is to
apply SVMs to resolve the uncertainty remaining after the first-
pass HMM-based recognizer. We will build on previous work in
which this two-pass recognition approach was used to develop spe-
cialized discriminative training procedures for HMMs [6, 7].

We refer to this divide-and-conquer recognition strategy as
acoustic code-breaking. The idea is first to perform an initial
recognition pass with the best possible system available, which
we take as HMM-based; then isolate and characterize regions of
acoustic confusion encountered in the first-pass; and finally apply
models to each region that are specially trained for these confu-
sion problems. This provides a framework for incorporating mod-
els that might not otherwise be appropriate for continuous speech
recognition. We observe in passing that since the first-pass HMM
system provides a proper posterior distribution over sequences,
this approach may be less affected by the label-bias problem that
can be encountered when discriminative classifiers are applied in
sequential classification [8].

To place our work in context, there have been previous appli-
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cations of SVMs to speech recognition. Ganapathiraju et al. [9]
obtain a fixed dimension problem by using a heuristic method to
normalize the durations of each variable length sequence. The dis-
tances to the decision boundary in feature space are then trans-
formed into phone posteriors using sigmoidal non-linearities. Smith
et al. [4] use score-spaces to train SVMs followed by a major-
ity voting scheme among binary SVMs to recognize isolated let-
ters. Golowich et al. [10] interpret multi-class SVM classifiers as
an approximation to multiple logistic smoothing spline regression
and use the resulting SVMs to obtain state emission densities of
HMMs. Forward Decoding Kernel Machines [11] perform max-
imum a posteriori forward sequence decoding, where transition
probabilities are regressed as a kernel expansion of acoustic fea-
tures and trained by maximizing a lower bound on a regularized
form of cross-entropy.

In the following sections we review the Segmental Minimum
Bayes Risk framework that we use for sequence recognition. We
then give brief descriptions of SVMs and scores-spaces, provid-
ing only the detail needed to describe our work. We will describe
the use of GiniSVMs that will allow non-positive kernels to used
for sequence classification. We then present our experiments and
results followed by our conclusions and ideas for future work.

2. SMBR FOR SPEECH RECOGNITION

Given a suitable loss function (W, W') between two word strings
W and W', the Minimum Bayes Risk (MBR) [12] decoder at-
tempts to minimize the empirical risk. It is formulated as

W =argmin > (W, W')P(W]|A) 1)
W!'eWw WeWw

where W represents all possible word strings in the grammar and
A are the observed acoustics.

For this search to be practical, W is usually represented by
the paths in a N-Best list or a lattice. However, the summation
and minimization over this search space (between word strings
W and W') in MBR decoders can still be prohibitively expen-
sive. SMBR [13, 14] decoders address this issue by reducing
the search problem to a sequence of smaller independent search
problems, i.e., the lattice is broken up or cut into a sequence of
M smaller sub-lattices. Under certain assumptions [13, 15], the
MBR search Equation 1 decomposes into a sequence of indepen-
dent MBR searches over each of the sub-lattices. Standard MBR
decoding is then performed over each of these smaller lattices

W; = argmin Z U(Wi, Wi)Py(W|A) @
WieWi wew;

where W; is the best path in the 4th sub-lattice and W; represents
all possible strings in the 7th sub-lattice. Finally, the sentence-level
MBR hypothesis is obtained as W = Wi - Wy - - - Was.

There are many lattice cutting schemes. In risk-based lattice
cutting [16], each path in the lattice is aligned to the MAP sen-
tence hypothesis W. The path is then segmented so that the loss
function relative to the MAP hypothesis remains consistent, i.e.,
(W, W'y =M 1w, w)).

Lattice cutting produces pinched lattices (Fig. 1, middle). The
segmentation process is designed so that the structure of the orig-
inal lattice is not disrupted: new paths may be introduced, but no
paths in the original lattice are lost, except possibly by pruning.
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Fig. 1. Lattice Segmentation for Estimation and Search. Top:
First-pass lattice of likely sentence hypotheses with MAP path in
bold; Middle: Alignment of lattice paths to MAP path; Bottom:
Refined search space ; consisting of segment sets selected for
discriminative training and rescoring

Since the paths from the original lattice are preserved, we can use
these pinched lattices for acoustic rescoring.

In this work we used Period-1 risk-based lattice cutting. This
produces sub-lattices whose strings are at most one word long
(Fig. 1, bottom). We prune these so that only the the MAP hy-
pothesis remains in regions of high confidence; in regions of low
confidence, the pinched lattice contains the MAP hypothesis along
with the competing word hypotheses. We perform the pruning ag-
gressively so that in regions of acoustic confusability there are at
most two competing words - the MAP hypothesis and one other.
Each of these segments is called a confusion pair. These are word
pairs, e.g., {V, B}. Associated with each instance of these pairs in
the lattices are the acoustic segments that caused these confusions;
these are the acoustic observations and their time boundaries pro-
vided by the lattice.

3. GINISVMS

We now briefly review the GiniSVM [11]. Given training data
{x;}L, and their labels {y;}7,, where x; € RY and y; €
{—1, +1}, the basic SVM searches for the hyperplane with the
largest separating margin by minimizing a regularized cost func-
tion.

GiniSVM is a multi-class probabilistic regression machine
that provides conditional probability estimates of each class. For a
binary classification problem, GiniSVM reduces to a special case
of the quadratic SVM and minimizes the following cost function

1 2
3 > ailK(xi, x;) + g&ij]aj —27) ©)

i,J
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subject to
Y yiai=0, 0<a;<C, )

where « is the rate distortion factor chosen as 2log2 and C'is the
SVM trade-off parameter that determines how well the SVM fits
the training data. Similar to the usual SVM formulation, GiniSVMs
employ a kernel K (-, -) to map input vectors to a higher dimension
space. GiniSVMs have the advantage that, unlike SVMs, they can
employ non positive-definite kernels.

New observations x are then classified as

y= Sgn(z yiaiK(x,xi)) + b ()

where b is the bias of the hyperplane that results from the con-
straints of the cost function [1].

4. SCORES AND SCORE-SPACES

Fisher scores [5] have been suggested as a means to map variable
length observation sequences into fixed dimension vectors and the
use of Fisher scores has been investigated for ASR [4]. Each com-
ponent of the Fisher score is defined as the sensitivity of the likeli-
hood of the observed sequence to each parameter of an HMM.

If O is an observation sequence and § = [6;,8;]" are the
parameters of two HMMs trained for the binary classes 1 and 2,
the projection of the observation sequence into the score-space is

given by
4]0 (:2)
Vg p(0|92)
(o)l
In ﬁEOIaig
Vs, lnp(061) ®)
~Ve, Inp(O|62)

»(0)

We first define the parameters of the j* Gaussian observation
distribution associated with state s in HMM ¢ as (us,s,5, Xi,5,5)- In
this work we derive the score space solely from the means of the
multiple-mixture Gaussian HMM state observation distributions,
denoted via the shorthand 6;[s, 4, k] = pi,s,;[k]; the decision to
focus only on the Gaussian means will be discussed in Section 7.
The gradient with respect to these parameters [4] is

T
N
Vit M P(OI6) = > 7iss (B[00 — o) =015

t=1

where ;s ; is the posterior for mixture component j, state s under
the 4** HMM found via the Forward-Backward procedure; and T’
is the number of frames in the observation sequence.

We now discuss issues in using scores derived in this way as
features to be classified by SVMs.

5. SVM IMPLEMENTATION

We first adjust the scores for each utterance via mean and variance
normalization. The normalized scores are given by

¢V (0) = 25 [p(0) — fisc], (7)

where ji5c and 3, are estimates of the mean and variances of the
scores as computed over the training data of the SVM. Ideally, the

SVM training will subsume the fi,. bias and the variance normal-
ization would be performed by the scaling matrix ;. as

¢V (0) = £3/%p(0) ®)

where 3, = [ ¢(0)'(0)P(0|8)dO. For implementation pur-
poses, the scaling matrix is approximated over the training data as

Sue = w7 S(#(0) — jiec) (9(0) ~ frec)  (9)

where fise = % 3 ¢(0), and NV is the number of training sam-
ples for the SVM. However we used a diagonal approximation for
¥ s since the inversion of the full matrix isc is problematic. Prior
to the mean and variance normalization, the scores for each utter-
ance are normalized by the utterance length 7.

For ASR, the linear kernel (K(x;,x;) = x;’ - x;), has pre-
viously been found to perform best among a variety of positive-
definite kernels [17]. We found that while the linear kernel does
provide some discrimination, it was not sufficient for satisfactory
performance. This observation can be illustrated using kernel maps.
A kernel map is a matrix plot that displays kernel values between
pairs of observations drawn from two classes, C; and C-. Ideally
if x,y € Cy and z € C,, then K(x,y) > K(x,z). and the ker-
nel map would be block diagonal. In Figs. 2 and 3, we draw 100
samples each from two classes to compare the linear kernel map
to the tanh kernel (K(x;,x;) = tanh(d * x;’ - x;)) map. Visual
inspection shows that the map of the tanh kernel is closer to block
diagonal. We have found in our experiments with GiniSVM that
the tanh kernel far outperformed the linear kernel; we therefore
focus on tanh kernels for the rest of the paper.
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Fig. 2. Kernel Map K(x;, x;) for the linear kernel over two class
data.

The GiniSVM classification performance was found to be
sensitive to the SVM trade-off parameter C'. Unless mentioned
otherwise, a value of C' = 1.0 was chosen for all the experiments
in this paper to balance between over-fitting and the time required
for training.

For efficiency and modeling robustness there may be value in
reducing the dimensionality of the score-space. There has been
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Fig. 3. Kernel Map K (x;, x;) for tanh kernel over two class data.

research [18] [17] to estimate the information content of each di-
mension so that non-informative dimensions can be discarded. As-
suming independence between dimensions, the goodness of a di-
mension can be found based on Fisher discriminant scores as [17]

|fsern[d] — fscr[d]]
q =t ! (10)
g[ ] z:sc[l][d:l + 2:sc[2] [d]

where fi,.;1(d) is the dth dimension of the mean of the scores of

the training data with label ¢ and flscm [d] are the corresponding
diagonal variances. SVMs can then be trained only in the most
informative dimensions by applying a pruning threshold to g[d].

6. SVMS IN AN SMBR FRAMEWORK

We now describe the steps to incorporate SVMs in the SMBR
framework.

6.1. Identifying confidence sets in the training set

Initial lattices are generated using the baseline HMM system to de-
code the speech in the training set. The lattices produced are then
aligned against the reference transcriptions [13]. Period-1 lattice
cutting is performed and each sub-lattice is pruned (by the word
posterior) to contain two competing words. This process identi-
fies regions of confusion in the training set. The most frequently
occurring confusion pairs (confusable words) are kept, and their
associated acoustic segments are identified, retaining time bound-
aries and the true identity of the word spoken.

6.2. Training SVMS for each confusion pair

For each acoustic segment in every sub-lattice, likelihood-ratio
scores as given by Equation 6 are generated. The dimension of
these scores is equal to the sum of the number of parameters of the
two competing HMM s plus one. If necessary, the dimension of the
score-space is reduced using the goodness criterion (Equation 10)
with appropriate thresholds. SVMs for each confusion pair are
then trained in our normalized score-space using the appropriate
acoustic segments identified as above.

6.3. SMBR decoding with SVMs

Initial test set lattices are generated using the baseline HMM sys-
tem. The MAP hypothesis is obtained from this decoding pass
and the lattice is aligned against it. Period-1 lattice pinching is
performed on the test set lattices. Instances of confusion pairs for
which SVMs were trained are identified and retained; other confu-
sion pairs are pruned back to the MAP word hypothesis.

The appropriate SVM is applied to the acoustic segment asso-
ciated with each confusion pair in the lattice. The HMM outputs in
the regions of high confidence are concatenated with the outputs
of the SVMs in the regions of low confidence. This is the final
hypothesis of the SMBR-SVM system.

6.4. Rationale

The most ambitious formulation of acoustic code-breaking is to
first identify all acoustic confusion in the test set, and then return
to the training set to find any data that can be used to train models
to remove the confusion. To present these techniques and show
that they can be effective, we have chosen for simplicity, to focus
on modeling the most frequent errors found in training. Earlier
work [6] has verified that training set errors found in this way are
good predictors of errors that will be encountered in unseen data.

7. EXPERIMENTS AND RESULTS

We evaluate our proposed method on the OGI-Alphadigits cor-
pus [19]. This is a small vocabulary task that is fairly challeng-
ing. The baseline Word Error Rates (WERs) for ML models are
around 10%; this ensures that there are enough number of errors
to allow for analysis. The corpus has a vocabulary of 36 words:
26 letters and 10 digits. The corpus has 46,730 training and 3,112
test utterances. We first describe the training procedure for the var-
ious baseline models. A more detailed description can be found in
Doumpiotis et al. [7].

Word based HMMs were trained for each of the 36 words. The
word models were left-to-right with approximately 20 states each,
12 mixtures per state. The data are parametrized as 13 dimen-
sional MFCC vectors with first and second order differences. The
baseline ML models were trained HTK-style [20]. The AT&T de-
coder [21] was used to generate lattices on both the training and the
test set. Since the corpus has no language model (each utterance is
a random six word string), an unweighted free loop grammar was
used during decoding. MMI training was performed [22] [23] at
the word level using word time boundaries taken from the lattices.
A new set of lattices for both the training and the test sets was
then generated using the MMI models. The Lattice Oracle Error
Rate for these lattices was 1.27%. Period-1 lattice cutting is then
performed on these lattices; the number of confusable words in
each segment is further restricted to two. This increased the Lat-
tice Oracle Error Rate to 3.11%. At this point there are two sets
of confusion pairs from the pinched lattices, one set comes from
the training data, and the other from the test data. We keep the 50
confusion pairs that are observed most frequently in the test data.
All other confusion pairs in training and test data are pruned back.
We emphasize that this is a “fair’ process; the truth is not used in
identifying confusion. Pinched Lattice MMI (PLMMI) [7] is then
performed on the MMI models with these lattices.

Table 1 presents the results for the baseline HMM systems.
Even though the pinched lattices have a higher oracle error rate,
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we see the PLMMI models have substantial gains over the MMI
models (7.98% vs. 9.07%).

SVMs were then trained for the 50 dominant confusion pairs
using the GiniSVM toolkit [24]. Log-likelihood ratio scores were
generated from the 12 mixture MMI system. The time boundaries
were estimated by the same HMM system. The scores are then
normalized as described in section 5.

We initially investigated score spaces constructed from both
Gaussian mean and variance parameters. However, training SVMs
in this complete score space is impractical since the dimension of
the score space is prohibitively large; the complete dimension is
approximately 40,000. Filtering these dimensions based on Equa-
tion 10 made training feasible, however performance was not much
improved. We hypothesize that there is significant dependence be-
tween the model means and variances so that the underlying as-
sumptions of the goodness criterion are violated.

We then used only the filtered mean sub-space scores for train-
ing SVMs (training on the unfiltered mean sub-space is still im-
practical because of the prohibitively high number of dimensions).
The best performing SVMs used around 2,000 of the most infor-
mative dimensions, which is approximately 10% of the complete
mean space. As shown in Table 1, applying SVMs to the MMI
system yields a significant 9.5% relative reduction in WER from
9.07% to 8.20%. This demonstrates that the SMBR-SVM system
can be used to improve performance of MMI trained HMM con-
tinuous speech recognition systems.

In comparing the MMI and SMBR-SVM hypotheses, we ob-
served that they differ by more than 4%; this has been observed
in some but not all previous work [10, 25, 4]. We therefore per-
formed a simple system combination: for each acoustic segment in
a confusion set, if the posterior of the HMM output is greater than
a threshold, we accept the HMM output; else, we choose the SVM
output. This was done because in these experiments the SVM pos-
teriors were not found to be reliable indicators of word correctness.
This combined system (“Voting” in Table 1) gives comparable per-
formance to the PLMMI system (8.04% vs.7.98%).

SVMs were also trained on the filtered mean only sub-space
of the 12 mixture PLMMI models. The best performing SVMs in
this case also used 10% of the most informative dimensions. While
the performance was comparable to the PLMMI HMM system, we
still do not improve upon it (8.01% vs. 7.98%) However, the same
system combination scheme outlined above does produce signifi-
cant gains over the PLMMI HMM system (7.73% vs. 7.98%).

Finally, the effect of the SVM trade-off parameter (C' in Equa-
tion 4) was studied. Figure 4 presents the WER results from train-
ing the SVMs for the confusion pairs at different values of C.
We find some sensitivity to C', however optimal performance was
found over a fair broad range of values (0.3 to 1.0).

All experiments reported thus far employ a global trade-off
parameter value for the SVMs trained for the confusion pairs. We
now investigate tuning the trade-off parameter for each SVM. The
results in Table 2 show that further gains can be obtained by find-
ing the optimal value of this parameter for each SVM. The oracle
result is obtained by ‘cheating” and choosing the parameter for
each SVM that yields the lowest class error rate. An alternative
systematic rule for choosing the parameter based on the number of
training examples is presented in Table 3 where C' decreases with
the amount of training data. WER results using SVMs trained with
the trade-off parameter set by this rule are presented in Table 2. By
this tuning we find that the SVMS have the potential to improve
over the PLMMI HMMs.

HMM | SMBR-SVM | \oting
ML 10.14 - -
MMI 9.07 8.20 8.04
PLMMI | 7.98 8.01 7.73

Table 1. WERs for HMM and SMBR-SVM systems.
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Fig. 4. WERs for different PLMMI SMBR-SVM systems as the
global SVM trade-off parameter (C) is varied.

8. CONCLUSIONS AND FUTURE WORK

We have introduced and developed a new approach for the applica-
tion of SVMs in ASR. The idea is to first perform an initial recog-
nition pass with the best possible HMMs; then isolate and charac-
terize regions of acoustic confusion; and then use specially trained
SVMs to resolve these confusions. On a small vocabulary task,
we showed significant improvements over MMI trained HMMs.
While we find significant improvements over MMI training, we
are still investigating the best way to incorporate the recently de-
veloped PLMMI training procedure into the SMBR-SVM frame-
work. However, we find that system combination yields improve-
ment over hoth these types of discriminative training.

We have also investigated the use of GiniSVMs, a variant of
the basic SVMs, for their use in ASR. We found significant im-
provements over basic SVMs which we believe is due to the abil-
ity of GiniSVMs to incorporate non-positive-definite kernels in
training.

We also see considerable improvement in the performance of
SVMs through selection of the most informative score-space di-
mensions, as has been noted [17]. We suspect this to be an artifact
of the approximation to the scaling matrix 3,.. If improved nor-
malization of the score-space is found either through better numer-
ical methods or an improved modeling formulation, the SMBR-
SVM formulation should yield improvements over pure HMM for-
mulations [5].

Previous work [17] suggests that the best performing HMMs
are not necessarily the best HMMs to seed the SVMs. In our case
use of any system other than that used to generate lattices leads
to complications in implementing SMBR-SVM systems. This re-
quires further work.

We have so far studied a simple task so that we could develop
this modeling framework and present it without complications.
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Tab

HMM | SMBR-SVM | \oting
PLMMI 7.98 8.01 7.73
Oracle - 7.77 7.59
Piecewise C - 7.88 7.67

le 2. WERs for SMBR-SVM systems with trade-off parameter

tuning.

N | N > 10,000

N > 10,000
N < 5,000

N > 5,000
N <500

N <500

c 0.33

0.75 1.0 2.0

Tab
throl

Our

le 3. Piecewise Rule for choosing trade-off parameter (C)
ugh the number of training observations (V).

ultimate goal is however to apply this framework to large vo-

cabulary continuous speech recognition, where we expect to face
data sparsity and prohibitively large score-space dimensions.

We have not made use of the ability of the GiniSVMs to gen-

erate conditional probability estimates over hypotheses. We expect
to be able to see further improvements in system combination by
deriving these posteriors directly from the SVM.
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