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ABSTRACT

A modeling approach is presented that incorporates discrimina-
tive training procedures within segmental Minimum Bayes-Risk
decoding (SMBR). SMBR is used to segment lattices produced
by a general automatic speech recognition (ASR) system into se-
quences of separate decision problems involving small sets of con-
fusable words. Acoustic models specialized to discriminate be-
tween the competing words in these classes are then applied in sub-
sequent SMBR rescoring passes. Refinement of the search space
that allows the use of specialized discriminative models is shown
to be an improvement over rescoring with conventionally trained
discriminative models.

1. INTRODUCTION

The limitations of the Maximum Likelihood Estimation (MLE)
procedures widely used in Hidden Markov Model (HMM) speech
recognition systems are well known. One of the most commonly
cited problems is the violation of the model correctness assump-
tion. Parameterized models obtained via MLE can be employed
optimally for detection and classification if the data encountered is
generated by some distribution from the model family. The prob-
lem arises due to the various conditional independence assump-
tions that underlie HMM models. Given these assumptions, it is
unlikely that the processes that actually generate speech can be
closely modeled by HMMs. Therefore ML estimation of HMMs
cannot be relied upon to yield models that are optimum for ASR.

As an alternative to relying on the asymptotic behavior of ML
estimation under the model correctness assumption, there are mod-
ified estimation and decoding procedures that directly attempt to
optimize ASR performance criteria. This paper describes a mod-
eling framework that unifies and extends two such modeling ap-
proaches, Maximum Mutual Information (MMI) estimation and
Minimum Bayes Risk (MBR) decoding.

2. DISCRIMINATIVE ESTIMATION AND DECODING

Maximum Mutual Information estimation [1, 2] attempts to im-
prove the likelihood of the correct sentence hypothesis given the
acoustic evidence. Given a labeled training set of word sequences
and acoustic observations {W, A}, MMI iteratively optimizes the
model parameters θ to increase P (W |A; θ) over W , which is usu-
ally taken to be the set of all word strings allowed in the language.
This training objective is directly related to reducing the Sentence
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Error Rate on the acoustic training set. This immediately suggests
that beyond the usual difficulties of ensuring that performance ob-
tained in training generalizes to the test set, there may also be is-
sues in generalization under different performance criteria. While
Sentence Error Rate is in some sense the ultimate performance cri-
terion, there may be value in estimation procedures that minimize
other criteria, such as Word Error Rate [3, 4].

Similar issues arise in the maximum a-posteriori (MAP) de-
coding criterion implemented by the Viterbi procedure. MAP de-
coding, which given an utterance A produces a sentence hypoth-
esis according to W̃ = argmax

W∈W P (W |A), is the optimum
decoding criterion when performance is measured under the Sen-
tence Error Rate criterion. However for other criteria, again such
as Word Error Rate, other decoding schemes may be better.

2.1. Segmental Minimum Bayes-Risk Decoders

With this motivation, Minimum Bayes-Risk decoders [5, 6] at-
tempt to find the sentence hypothesis with the least expected error
under a given task specific loss function. If l(W, W ′) is the loss
function between word strings W and W ′, the MBR recognizer
seeks the optimal hypothesis as

Ŵ = argmin
W ′∈W

∑

W∈W

l(W, W ′)P (W |A). (1)

Prior work in MBR decoding has treated it essentially as a large
search problem in which W are N-Best lists or lattices that in-
corporate P (W |A) as a posterior distribution on word strings ob-
tained using an HMM acoustic model and an N-gram language
model [5, 6].

Segmental Minimum Bayes Risk decoding was developed [7]
to address the MBR search problem over very large lattices. We
assume that each word string W ∈ W is segmented into N sub-
strings of zero or more words W1, . . . , WN . Since each lattice
path is a word string W ∈ W , this segments the original lattice
into N segment sets Wi, i = 1, 2, ..., N . Given a specific lattice
segmentation, the MBR hypothesis Ŵ can then be obtained as a
sequence of independent decision rules

Ŵi = argmin
W ′∈Wi

∑

W∈Wi

l(W,W ′)Pi(W |A) (2)

where Ŵ is the concatenation of Ŵi, i = {1, 2, ..., N}, from
which the term Segmental Minimum Bayes Risk follows.

There are a variety of possible segmentation schemes. Here
we segment the lattice word strings by aligning each path in the lat-
tice to the MAP sentence hypothesis [7, 8]: given the MAP hypoth-
esis W̃ , we segment the paths in the lattice to attain l(W̃ , W ′) =



∑
N

i=1 l(W̃i, W
′
i ). This segmentation procedure is performed care-

fully so as to retain the structure of the original lattice in regions
of low confidence [8].

2.1.1. Search Space Refinements

This procedure can be used both to identify potential errors in
the MAP hypothesis and to derive a new search space for the
subsequent decoding passes. For each utterance that is to be de-
coded, we define a new search space, called a pinched lattice, by
concatenating the segment sets found by lattice cutting: W̃ =
W1 · · ·WN . In regions of low confidence, the search space con-
tains portions of the MAP hypothesis along with confusable alter-
natives. In regions of high confidence, the search space is restricted
to follow the MAP hypothesis itself. Because the structure of the
original lattice is retained whenever we want to consider alterna-
tives to the MAP hypothesis, we can perform acoustic rescoring
over this pinched lattice.

2.1.2. Refined Discriminative Training for SMBR Decoding

We have the opportunity to train and apply extremely refined acous-
tic models trained specifically to resolve the errors encountered in
the test set. In previous approaches to MBR, Pi(W |A) was found
via a lattice forward-backward procedure [7] using fixed likelihood
scores obtained from the original ASR system. Even if this system
was trained using MMI, it is still intended to discriminate between
all sentences in the language that might be uttered.

Rather than derive these posteriors from general acoustic mod-
els, our goal is to estimate each Pi(W |A) so that it is optimized
for the distinct recognition problem to which it will be applied:
Pi(W |A) will be trained only to discriminate word sequences in
Wi. There are two problems here that arise. The first is the ap-
propriate training criterion. The second is to find relevant train-
ing data. SMBR allows us to address them simultaneously. We
generate lattices on the acoustic training set, and perform lattice
segmentation with respect to the true transcription. This identifies
patterns of recognition errors within the training set. Given a par-
ticular error pattern found in the test set, we can use training data
associated with similar errors to train a discriminative model.

In summary, our goal is to develop a joint estimation and de-
coding procedure that improves over MMI. After an initial MAP
decoding pass with MMI models, for each utterance we use lattice
cutting to produce pinched lattices that identify the segment sets
that are likely to contain recognition errors. We then turn to the
training set to find all relevant data that can be used to train mod-
els Pi(W |A) to pick the correct hypothesis from these segment
sets. We finally apply these models in a full acoustic rescoring of
the pinched lattice by applying each Pi(W |A) in decoding over
the appropriate segment set.

3. MMI BASELINE PERFORMANCE

To develop the basic estimation and decoding mechanisms, we
present results on the OGI Alpha-Digits task [9]. This is a fairly
challenging small vocabulary task on which we still encounter a
relatively high baseline WER (approx. 10%). This ensures that
we have a significant number of errors to identify and correct. We
begin by presenting the MMI baseline system and analyzing its
performance and the errors it makes.

Error Pairs c̄
(3)
0 c̄

(3)
1 Error Pairs c̄

(3)
0 c̄

(3)
1

1. F+S 58 60 6. 8+H 17 34
2. V+Z 54 42 7. A+8 10 40
3. M+N 45 35 8. L+OH 12 33
4. P+T 32 44 9. B+D 16 23
5. B+V 40 29 10. C+V 16 17

Table 1. Dominant Confusion Pairs in Unconstrained Recognition
after Three MMI Iterations.

The baseline system is built using the HTK Toolkit [10]. The
data is parameterized as 13 element MFCC vectors with first and
second order differences . The training set consists of 46,730 ut-
terances. The baseline maximum likelihood models contain 12
mixtures per state, estimated according to the usual HTK training
procedure. Starting from these models, several iterations of MMI
estimation were performed. The AT&T Large Vocabulary De-
coder [11] was used to generate lattices for the training set where
are then transformed into word posteriors based on the lattice total
acoustic score. MMI is then performed at the word level using the
word time boundaries taken from the lattices. The test set consists
of 3,112 utterances. The Alpha-Digits task does not have a specific
language model, thus recognition both for MMI lattice generation
and test set decoding is performed using an unweighted word loop
over the vocabulary. Table 3, Row 1 shows that significant im-
provement over the baseline can be obtained by MMI: the initial
ML performance of 10.7% WER is reduced to 9.07%.

We now look closely at the changes in errors as MMI training
proceeds. Table 1 presents the most frequently confused words
(‘confusion pairs’) observed after three iterations of MMI estima-
tion. Iteration 3 is chosen because MMI performance is nearly op-
timal at that point. We tabulate errors over each word in each class.
The notation c̄

(3)
0 (1) = 58 indicates that there are 58 instances in

which F is incorrectly recognized as S, and c̄
(3)
1 (1) = 60 indicates

that there are 17 instances in which S is incorrectly recognized as
F. The superscript indicates the MMI iteration.

As indicated in Table 3, overall WER does decrease as MMI
training progresses. However, when the confusion pairs are moni-
tored individually, it becomes apparent that the improvement is not
uniform. Figure 1 tracks the change in confusion pair counts rela-
tive to performance at MMI iteration 2. The top plot indicates that
c
(3)
0 (1) (the number of times F is misrecognized as S) decreases

by 18 in going from the second to third MMI iteration, and by 30
in the fourth iteration. However, c

(4)
1 (1) − c

(2)
1 (1) is positive and

larger than c
(3)
1 (1) − c

(2)
1 (1) which is also positive, which indi-

cates that the improved recognition of F comes at the expense of
errors in the recognition of S. Ideally, all these changes should be
negative. However, that behavior is not guaranteed by the MMI
training procedure, which is free to introduce performance degra-
dation over individual confusion pairs so long as the overall sen-
tence posterior score improves.

4. CONFUSION PAIRS VIA LATTICE CUTTING

The identification of ASR errors through confidence measurements
is well-established [12, 13], and our training approach builds on
this work. We need to establish first that lattice cutting finds seg-
ment sets that are similar to the dominant confusion pairs observed
in MMI decoding. We also need to establish that the segment sets
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Fig. 1. Confusion Pair Errors in MMI Decoding. Left: c̄(3)(k) −

c̄(2)(k); Right: c̄(4)(k) − c̄(2)(k). The abscissa k is the confu-
sion pair index given in Table 1. For each confusion pair index,
c̄
(i)
0 (k) − c̄

(2)
0 (k) is given in the left (black) bar and c̄

(i)
1 (k) −

c̄
(2)
1 (k) is given in the right (white) bar.

identified in the test set are also found consistently in the training
set. If these two conditions hold, there is the possibility of train-
ing discriminative models on the segment sets in the training data
and applying them to the test data to resolve the dominant errors
remaining after MMI training.

We establish the first point by comparing the dominant MMI
confusion pairs in Table 1 with the test set segment sets found in
Table 2 by lattice cutting. There is good agreement among the
top eight sets identified in each case, after which there is some
divergence. A similar relationship holds between the segment sets
identified in test and training reported in Table 2.

4.1. Unsupervised Selection of Segment Sets

As described earlier we obtain segment sets by aligning lattice
paths to the MAP hypothesis [8]. We use a particular version of
the algorithm, known as ‘Period-1’ cutting. This yields segment
sets that contain word sequences of length at most one word, as in
the middle panel of Fig. 2. This is suboptimal in that better WER
is can be by optimizing the cutting period [8], however the Period-
1 case is the simplest to study. We further simplify the problem by
restricting the segment sets to contain only two competing word
sequences.

The process starts by identifying the MAP path in a first-pass
ASR lattice (Fig. 2, Top). Period-1 risk-based lattice cutting is used
to reduce the lattice to a sequence of segment sets. In some regions
only the MAP path remains (Fig. 2, Middle); each arc also contains

Test Set Count Training Set Count

1 F+S 1089 1 F+S 15197
4 P+T 843 4 P+T 10744
6 8+H 784 6 8+H 10370
3 M+N 772 3 M+N 10242
2 V+Z 557 2 V+Z 8068
9 B+D 389 9 B+D 5996
8 L+OH 343 8 L+OH 5108
5 B+V 314 5 B+V 4963
- A+K 292 - 5+I 4413
- 5+I 289 - J+K 3653

Table 2. Frequent confusion pairs found by lattice cutting. Indices
provided for pairs in the dominant MMI confusable pairs.
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Fig. 2. Lattice Segmentation for Estimation and Search. Top:
First-pass lattice of likely sentence hypotheses with MAP path in
bold; Middle: Alignment of lattice paths to MAP path; Bottom:
Refined search space W̃ consisting of segment sets selected for
discriminative training.

a word posterior derived from the original lattice. Segment sets
that occur less than ten times are discarded.

We then perform the same process on the training set to obtain
a collection of segment sets representative of recognition errors
found in the training data. We use these two collections to identify
the 50 test segment sets that were also observed most frequently
in training. In this way we identify a final collection of segment
sets that are likely to contain recognition errors and that also occur
frequently in the training set.

The final step in the search space refinement is to restrict the
segment sets initially identified in the test set to the final 50 that
also occur frequently in the training set (Fig. 2, Bottom). Some
segment sets not in the final collection (e.g. OH+4) are discarded.

The word hypotheses in the refined search space are identified
by the segment set to which they belong. This makes it simple to
perform discriminative training and to apply the discriminatively
trained models appropriately in rescoring. There will be several
models for A, for instance. The model A:17 will be used whenever
the word hypothesis A is found in segment set 17. Model A:17 is
trained to distinguish A’s from J’s, and is therefore different from
A:7, which is trained to distinguish A’s from 8’s.

5. SMBR TRAINING AND DECODING

Our goal is to perform SMBR as described in Equation 2 using
models Pi(W |A) trained to minimize the expected loss over hy-
potheses drawn from Wi. The estimation is difficult in general,
although procedures are available [3, 4]. However Period-1 lattice
cutting reduces this problem to MMI estimation over the compet-
ing word hypotheses in Wi. This can be seen simply by noting
that the loss function over the strings in Wi is the 1-0 loss function
(trivially) consistent with Levenshtein distance between strings of
length 1. The minimum risk decoder is therefore the MAP de-
coder, and empirical risk is minimized by maximizing the likeli-
hood of the correct hypothesis.

We use MMI to estimate word models Pi(A|W ) for W ∈ Wi.
Models are initialized using word models trained by three ’normal’
MMI iterations (MMI-3 models). The Pi(A|W ) are refined using
the training set segments identified for each Wi, as described in



Iteration 0 1 2 3 4 5

MMI 10.7 9.98 9.36 9.07 ∗ 9.03 9.27
DT+SMBR ∗ 8.47 8.17 8.01 7.92 7.86

Table 3. MMI vs. SMBR Training and Decoding in WER(%).
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Fig. 3. Confusion Pair Errors in DT+SMBR Decoding. Left:
c̄(4)(k)− c̄(3)(k); Right: c̄(5)(k)− c̄(3)(k). (see Fig. 1 caption).

the previous section. The training objective for each set of distri-
butions is to maximize Pi(A|W )/

∑
W ′∈Wi

Pi(A|W
′), which is

done using MMI over the appropriate training set segments.
The Period-1 cutting used to identify the segment sets also

simplifies the SMBR decoding procedure of Equation 2. In a sim-
ilar way as was observed in the estimation problem, rescoring is
simply Viterbi search over the refined search spaces W̃ . When
the search space is constrained to follow the MAP hypothesis, the
MMI-3 models are used. In regions of the search space corre-
sponding to a segment set Wi, models Pi(A|W ) are used.

The results of SMBR training and decoding are given in Ta-
ble 3. We first discuss the search space refinements. We performed
the ‘sanity check’ of rescoring the pinched lattices with the MMI-
3 models: performance was identical to unconstrained rescoring.
This verifies that the search space refinement introduces no new
errors. Pinching does reduce the lattice search space substantially,
however. The Lattice Word Error Rate of the original lattices is
1.27%, which increases to 3.11% after pinching. Despite this re-
striction in the search space, we still see more than a 1% WER re-
duction beyond the best MMI performance. We also note that the
discriminatively trained models are inextricably bound up with the
SMBR segmentation process. Performance degrades drastically if
these models are used in unconstrained search decoding pass.

Finally, we note that the improvement over the confusion pairs
is more uniform than under MMI estimation. Figure 3 shows that
nearly all the error counts are decreasing over all words within the
confusion classes. Overall performance gains found with SMBR
are not being achieved at the expense of words in individual classes.

6. CONCLUSION

We have presented an ASR modeling framework that incorpo-
rates discriminative training in SMBR rescoring. It is a divide-
and-conquer approach to identifying and eliminating ASR errors.
SMBR decoding is used first to identify distinct regions in the
search space that are likely to contain errors, and then used in
rescoring with models trained specifically to resolve these errors.
We have shown on a small vocabulary recognition task that this re-
finement of the search space allows us to improve the effectiveness

of the widely used MMI estimation procedure.
Casting the ASR problem as a minimum Bayes-risk decision

problem provides a rigorous framework for the integration of dis-
criminative search and estimation procedures. Although we have
selected a simple recognition task to develop and present our ap-
proach, our ultimate goal is apply these techniques to large vo-
cabulary ASR. Due to the great diversity of ASR errors in large
vocabulary tasks, we expect the primary challenge to be robust es-
timation of discriminative models from sparse training data. We
expect that constrained, discriminative estimation procedures will
prove useful in these problems [14].
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