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Abstract

Modeling approaches are presented that incorporate discrimi-
native training procedures in segmental Minimum Bayes-Risk
decoding (SMBR). SMBR is used to segment lattices produced
by a general automatic speech recognition (ASR) system into
sequences of separate decision problems involving small sets of
confusable words. We discuss two approaches to incorporat-
ing these segmented lattices in discriminative training. We in-
vestigate the use of acoustic models specialized to discriminate
between the competing words in these classes which are then
applied in subsequent SMBR rescoring passes. Refinement of
the search space that allows the use of specialized discrimina-
tive models is shown to be an improvement over rescoring with
conventionally trained discriminative models.

1. Introduction
Minimum Bayes Risk Decoding (MBR) is an alternative ASR
search strategy that produces hypotheses in an attempt to mini-
mize the empirical risk of speech recognition errors [1, 2]. The
measurement of risk derives from a loss function that is appro-
priately chosen for the recognition task; for example, in ASR
the Levenshtein distance is most commonly used. MBR de-
coding has been found to consistently provide improved per-
formance relative to straightforward maximum likelihood (ML)
decoding procedures. This is usually credited to the integra-
tion of the task performance criterion directly into the decoding
procedure. The minimum risk formulation can also be used to
explain the effectiveness of ASR hypothesis and system combi-
nation procedures such as ROVER [3, 4, 5]. The effectiveness
of MBR decoding appears to be fairly independent of how the
underlying models are trained. Both ML and discriminatively
trained models can benefit from MBR decoding. However there
is the possibility of developing estimation procedures for mod-
els intended specifically for use in MBR decoding.

We use the Segmental Minimum Bayes Risk (SMBR) de-
coding framework [6, 7] to develop discriminative estimation
and decoding procedures. SMBR is a divide-and-conquer ap-
proach to ASR that transforms continuous speech recognition
into a connected sequence of separate recognition problems.
This approach can be thought of as identifying the recogni-
tion problems that remain after the initial recognition pass.
Rescoring can then be done with specialized sets of models,
each of which is discriminatively trained to “solve” these sep-
arate sub-tasks. We call this coupled recognition and estima-
tion strategy Segmental Minimum Bayes Risk Discriminative
Training (SMBR-DT) [8]. In this paper we analyze SMBR-DT
and its relationship to Maximum Mutual Information estimation

This work was supported by the National Science Foundation under
grants No. #IIS-9982329 and No. #IIS-0122466.

(MMI) [9, 10]. We show that SMBR-DT can yield improve-
ment over MMI both in the overall word error rate and in the
distribution of individual word errors.

2. Risk-Based Estimation and Decoding
MBR decoders attempt to find the sentence hypothesis with the
least expected error under a given task specific loss function.
If l(W, W ′) is the loss function between word stringsW and
W ′, the MBR recognizer seeks the optimal hypothesis given
the acoustic dataA as

Ŵ = argmin
W∈W

∑
W ′∈W

l(W, W ′)P (W ′|A). (1)

Prior work in MBR decoding has treated it essentially as a large
search problem in whichW are N-Best lists or lattices that in-
corporateP (W ′|A) as a posterior distribution on word strings
obtained using an HMM acoustic model and an N-gram lan-
guage model [1, 2].

MAP decoding, which given an utteranceA produces a sen-
tence hypothesis according tõW = argmaxW∈W P (W |A), is
the optimum decoding criterion when performance is measured
under the Sentence Error Rate criterion, i.e. whenl(W, W ′) is
the 0/1 valued identity function.

2.1. Segmental Minimum Bayes-Risk Decoders

Segmental Minimum Bayes Risk decoding was initially devel-
oped [7] to address the MBR search problem over very large lat-
tices. We assume that each word stringW ∈ W is segmented
into N substrings of zero or more wordsW1, . . . , WN . Since
each lattice path is a word stringW ∈ W, this segments the
original lattice intoN segment setsWi, i = 1, 2, ..., N . Given
a specific lattice segmentation, the MBR hypothesisŴ can then
be obtained as a sequence of independent decisions [7]

Ŵi = argmin
W∈Wi

∑
W ′∈Wi

l(W, W ′)Pi(W
′|A). (2)

Pi(W
′|A) is the probability of observing the stringW ′ in the

ith segment set:Pi(W
′|A) =

∑
W∈W:Wi=W ′ P (W |A). The

complete sentence hypothesis is obtained asŴ = Ŵ1 · · · ŴN .
Once a lattice has been segmented, the distance between

two strings in the lattice is constrained by the segmentation, i.e.
the distance betweenW andW ′ is found as

∑N
i=1 l(Wi, W

′
i ).

Ideally, we should satisfy the strong requirement that the loss
function between any two word sequencesW, W ′ ∈ W is
not affected by the lattice cutting, i.e. thatl(W, W ′) =∑N

i=1 l(Wi, W
′
i ). This is difficult to achieve and by way of

approximation we segment the lattice word strings by aligning
each path in the lattice to the MAP sentence hypothesis [7, 11]:
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Figure 1: Lattice Segmentation for Estimation and Search.Top:
First-pass lattice of likely sentence hypotheses with MAP path
in bold; Middle: Alignment of lattice paths to MAP path;Bot-
tom: Refined search spacẽW consisting of segment sets se-
lected for discriminative training and rescoring.

given the MAP hypothesis̃W , we segment the paths in the lat-
tice to attainl(W̃ , W ′) ≈

∑N
i=1 l(W̃i, W

′
i ).

2.1.1. Unsupervised Search Space Refinement and Selection of
Confusion Sets

Lattice segmentation can be used both to identify potential er-
rors in the MAP hypothesis and to derive a new search space for
the subsequent decoding passes. For each utterance that is to be
decoded, we define a new search space, called a “pinched lat-
tice”, by concatenating the segment sets found by lattice cutting:
W̃ = W1 · · ·WN . In regions of low confidence, the search
space contains portions of the MAP hypothesis along with con-
fusable alternatives; we call theseConfusion Sets. In regions
of high confidence, the search space is restricted to follow the
MAP hypothesis itself (Fig. 1). Because the structure of the
original lattice is retained whenever we consider alternatives to
the MAP hypothesis, we can perform acoustic rescoring over
this pinched lattice.

2.2. Risk-Based Training

Suppose we have a database{W̄ , A} of transcribed speech.
One approach to discriminative estimation is to estimate model
parameters as follows

θ∗ = argmin
θ

∑
W ′∈W

l(W̄ , W ′)P (W ′|A; θ) (3)

As was observed in the MAP decoder, under the 0/1 loss
function, Equation 3 becomes the MMI objective function
argmaxθ P (W̄ |A; θ). The close relationship between MMI
and minimum risk estimation is widely known, and MMI-
variants for the training criterion of Equation 3 have been de-
veloped [12, 13].

2.2.1. Pinched Lattice MMI

An alternative approach to direct risk minimization is to first in-
corporate lattice pinching, with the goal of focusing both train-
ing and decoding procedures on individual recognition errors.
Following the approach developed for SMBR decoding, we seg-
ment and pinch the lattice paths, so that the original latticeW
is approximated by the pinched latticẽW, although in training,

the segmentation is found relative to the correct transcription.
When restricted to the pinched lattice, Equation 3 becomes

θ∗ = argmin
θ

N∑
i=1

∑
W ′∈W̃i

l(W̄i, W
′)Pi(W

′|A, W̃; θ) (4)

wherePi(W
′|A, W̃; θ) =

∑
W∈W̃:Wi=W ′ P (W |A; θ). Note

that this makes use of the loss function induced by lattice seg-
mentation with respect to the transcription.

Pinching has the further effect that no contribution to the
loss function comes from any of the high-confidence segment
sets that were constructed so as to agree with the MAP hypoth-
esis. To exclude these, we introduce the global confusion class
C ⊆ {1, . . . , N} to indicate the segment sets that permit alter-
natives to the MAP path, i.e.i ∈ C implies thatWi contains
at least one segment not in the MAP hypothesis. We can then
write the objective as

θ∗ = argmin
θ

∑
i∈C

∑
W ′∈W̃i

l(W̄i, W
′)Pi(W

′|A, W̃; θ). (5)

Finally, we assume that we have a 0/1 loss function and arrive
at the “pinched lattice” MMI objective function

θ∗ = argmax
θ

∑
i∈C

Pi(W̄i|A, W̃; θ). (6)

We implement this as lattice-based MMI [10], with two sim-
ple modifications. As described above, the posterior statistics
are computed over the pinched lattice. The introduction of the
global confusion class excludes from the MMI calculation any
contribution from the high confidence segment sets; only statis-
tics from those in the global confusion class are accumulated.
These two modifications force the MMI procedure to focus on
the low confidence regions identified by lattice pinching.

2.2.2. SMBR Discriminative Training

We begin by partitioning the global confusion setC into a col-
lection of error equivalence classes{Cj}J

j=1. We then clone
the model parametersJ times so that there is a separate, inde-
pendent parameter setθj for each of theJ error equivalence
classes, i.e.θ → {θ1, . . . , θJ}. Ideally, each class will rep-
resent ASR errors that can be “fixed” in the same way. In the
simple task we address in this paper, the classes are binary word
errors, i.e. the segment sets are generated so that they contain
only pairs of words. We note that individual words will appear
in multiple equivalence classes, as the equivalence is over er-
rors, not words. For instance, there may be two equivalence
classesC17 = {A, J} andC7 = {A, 8}. The modelsθ17 are
trained to discriminate between ‘A’ and ‘J’, whereas the models
θ7 should discriminate between ‘A’ and ‘8’.

Assuming that the parameter setsθj can be optimized in-
dependently, the pinched lattice MMI criterion of Equation 6
becomes the objective for SMBR Discriminative Training

θ∗j = argmax
θj

∑
i∈Cj

Pi(W̄i|A, W̃; θj) for j = 1, . . . , J. (7)

We note that pinched lattice MMI is a special case of this
form of SMBR-DT. We also emphasize that the HMM model
architecture is retained in pinched lattice MMI and SMBR-DT,
and that only the training criterion changes. The goal is to esti-
mate HMMs forP (A|W ; θj) to optimize Equations 7 and 4.



2.3. SMBR Discriminative Training and Decoding

We have developed the following decoding strategy [8] to inte-
grate the estimation and decoding procedures described in the
previous section.

1). Following an initial lattice generation MAP decoding
pass, we use lattice cutting with respect to the MAP hypothe-
sis to produce pinched lattices that identify low-confidence seg-
ment setsWi that are likely to contain recognition errors. These
sets are then grouped into equivalence classes{Cj}J

j=1.
2). We then turn to the training set to find all relevant data

that can be used to train modelsP (A|W ; θj) that can be applied
for all W ∈ Wi andi ∈ Cj .

3). We finally apply these models in a full acoustic rescor-
ing of the pinched latticẽW. For each classj, the modelsθj are
used for the words in the segment setsWi ∈ Cj ; the first-pass
models are used for words in segment sets not inC.

3. Performance and Error Analysis
We present results on the OGI Alpha-Digits task [15]. This
is a fairly challenging small vocabulary task on which we the
ML trained system has a relatively high baseline Word Error
Rate (WER) (approx. 10%). This ensures that we have a sig-
nificant number of errors to identify and correct. The baseline
system is built using the HTK Toolkit [16]. The training set
consists of 46,730 utterances. The data is parameterized as
13 element MFCC vectors with first and second order differ-
ences. The baseline ML whole word models contain 12 mix-
tures per state. The AT&T Large Vocabulary Decoder [17] was
used to generate word lattices for the training set which were
then transformed into word posteriors based on the lattice total
acoustic score. MMI is then performed at the word level using
the word time boundaries taken from the lattices. The Gaussian
means and variances are updated as described by Woodland and
Povey [10] (Sec. 3, schemeii with E = 2). The Alpha-Digits
task does not have a specific language model, thus recognition
both for MMI lattice generation and test set decoding is per-
formed using an unweighted word loop over the vocabulary.
The test set consists of 3,112 utterances. ASR performance for
5 iterations of MMI training is presented in Figure 2. Signifi-
cant improvement over the baseline can be obtained by MMI:
the initial ML performance of 10.7% WER is reduced to 9.07%
before overtraining is observed in the WER.

3.1. Unsupervised Selection of Segment Sets

Both SMBR-DT and pinched lattice MMI require lattice seg-
mentation; lattices are generated using MMI-3 models and fixed
for all subsequent rescoring and training iterations. As de-
scribed earlier, we obtain segment sets by aligning lattice paths
to the MAP hypothesis [11]. We use a particular version of the
algorithm, known as “Period-1” cutting. This yields segment
sets that contain word sequences of length at most one word,
as described in Section 3.1 and the middle panel of Figure 1.
This is suboptimal in that better WER can be obtained by op-
timizing the cutting period [11], however the Period-1 case is
the simplest to study. We further simplify the problem by re-
stricting the segment sets to contain only two competing word
sequences; segment sets that occur less than 10 times are dis-
carded. This process is performed on both the test and training
set lattices. We use these two collections to identify the 50 test
segment sets that were also observed most frequently in train-
ing. In this way we identify a final collection of segment sets
that are likely to contain recognition errors and that also occur
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Figure 2: WER and Class-Specific Errors for MMI, Pinched
Lattice MMI, and SMBR-DT.



frequently in the training set. The 10 most frequent sets can be
found in Figure 2 (see also [8]).

We emphasize that the process of selecting confusion sets
is unsupervised. The effectiveness of the approach depends on
the unsupervised selection of segment sets and the reliability
with which they can be associated with ASR errors. The iden-
tification of ASR errors through confidence measurements is
well-established [3, 14]. Our work follows these approaches
and we have verified it does indeed identify recognition errors
consistently and reliably (see [8], Section 4.1).

3.2. Rescoring After Pinched Lattice MMI and SMBR-DT

Models trained after three MMI iterations (MMI-3) were used
to initialize the pinched lattice MMI and SMBR-DT proce-
dures. We observe in Figure 2 that the iterations of pinched
lattice MMI estimation (MMIpl) yield continued improvement
in WER. This is in sharp contrast to “regular lattice” MMI
which shows evidence of overtraining beyond the fourth iter-
ation. This is done as a fair comparison between pinched lat-
tice and regular MMI, in that the systems being compared are
of equal complexity and have the same number of parameters.
The improved performance can therefore be attributed to the
use of lattice pinching in MMI estimation to refine the space
of competing hypotheses. SMBR-DT yields further improve-
ments, whether initialized by MMI or by pinched lattice MMI
(MMI-pl+SMBR-DT); these results suggest that the pinched
lattice hypothesis space refinement and the use of specialized
discriminative models in rescoring are complementary.

3.3. Within-Class Error Analysis

We now present an analysis of the substitution errors made in
rescoring with models trained with MMI, pinched lattice MMI,
and SMBR-DT procedures. Ideally, all error types should de-
crease over each of the 3 training iterations shown in Figure 2.
However, despite the overall reduction in WER achieved by
MMI training, error types are not reduced uniformly. For exam-
ple, the decrease inF→S indicates that the number of timesF
is recognized asS decreases sharply over the 3 MMI iterations.
However, the complementary plot ofS→F indicates that this
takes place at the cost of introducing errors in whichS is rec-
ognized asF . We find that this undesirable behavior is greatly
reduced by the pinched lattice MMI models and nearly entirely
eliminated with the SMBR-DT models. In Section 2 we note
that MMI is associated with Sentence Error Rate, while pinched
lattice MMI and SMBR-DT are motivated by minimization of
WER. This provides experimental support in favor of estimation
procedures that are tuned to the task performance measure.

4. Conclusion
We have shown that lattice segmentation and estimation tech-
niques based on empirical risk minimization can be integrated
into a divide-and-conquer strategy for ASR. We introduce
pinched lattice MMI which yields improved performance rel-
ative to MMI by focusing on errors identified in the training set
and does so without any introduction of additional model com-
plexity. Both pinched lattice MMI and SMBR-DT are shown
to yield improved performance over MMI not only in overall
WER but also in individual substitution errors.

The potential gains in our experiments are limited by our
use of binary confusion sets; this choice was made to sim-
plify analysis and presentation. We note anecdotally that fur-
ther WER improvements are possible by using more and richer

confusion sets.
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tion for the Overall Risk Criterion Based Discriminative
Training of HMM Models,” in ICSLP, Beijing, China,
2000.

[13] D. Povey and P. C. Woodland, “Minimum Phone Error
and I-Smouthing for Improved Discriminative Training,”
in ICASSP, 2002.

[14] T. Hain, P.C. Woodland, T.R. Niesler, and E.W.D. Whit-
taker, “The 1998 HTK System for Transcription of Con-
versational Telephone Speech,” inICASSP, 1999.

[15] M. Noel, “Alphadigits,” CSLU, OGI, 1997,
http://www.cse.ogi.edu/CSLU/corpora/alphadigit.

[16] S. Young et. al.,The HTK Book, Version 3.0, July 2000.

[17] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted Automata in Text and Speech Processing,” in
ECAI, 1996.


