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Abstract

Language models are generally estimated using smoothed

counting techniques. These counting schemes can be viewed

as non linear functions operating on a Bernoulli process which

converge asymptotically to the true density. The rate at which

these counting schemes converge to the true density is con-

strained by the training data set available and the nature of the

language model (LM) being estimated. In this paper we look

at language model estimates as random variables and present

an efficient relative entropy (R.E) based approach to study their

convergence with increasing training data size. We present ex-

perimental results for language modeling in a generic LVCSR

system and a medical domain dialogue task. We also present an

efficient recursive R.E computation method which can be used

as a LM distance measure for a number of tasks including LM

clustering.

1. Introduction

Language models are generally conceived as probability models

which define the probability of seeing a word sequence W in

a sentence. The most common language models are specified

in terms of a hierarchical sequence of n-grams which specify

the probability of observing a word w given the sequence of

n−1words specified by the history hwhich have been observed
before it. These models are simple to implement in terms of

model parameter estimation and calculation of the probability

of a word sequence W .

Given a set of utterances for training, a n-gram language

model can be generated using a simple counting process which

counts the number of times (k) a word w is seen in training

data after the history h. If the history h occurs N times in the

training data, the maximum likelihood estimate of probability

P (w/h)=k/N . However this estimate is itself a random vari-

able which can be shown to converge to the true P (w/h) as
N increases to infinity. Under different constraints we can ap-

proximate this estimate by a Gaussian or a Laplacian with mean

equal to the true probability.

Although asymptotically convergent, availability of train-

ing data limits the use of the maximum likelihood based count-

ing scheme. A large number of history and word pairs are either

not seen at all in the training corpus or their counts (N, k) are
very low which means that the LM estimate will have a large

variance. A number of smoothing techniques[2] exist to dis-

tribute the probability mass among the n-grams in a more uni-

form fashion, so that the estimated model is more accurate.

The convergence rate of a language model to the true den-

sity is an important consideration in determining the type of lan-

guage model one should use for given training data constraints.

Some of the factors directly effected by the confidence we can

place on the LM estimates include the LM n-gram order, selec-

tion of LM classes etc. In addition, it effects the weighting a

language model receives in various classifier combination tasks

such as speech recognition, topic detection etc.

One of the popular measures to evaluate the goodness of

language models is perplexity. Perplexity is defined as 2H(T )

whereH(T ) is the cross entropy of a given test set T

H(T ) = − 1
k

k∑

i=1

log2 p(wi/hi)

Perplexity is essentially a measure of the match between the lan-

guage model and a held out test set T . Previous work[2][8] has
compared performance of smoothing schemes across increasing

data size in terms of perplexity measurements.

Another distance metric that can be used to compare two

discrete probability models such as language models is relative

entropy (R.E) or Kullback Leibler distance which is defined as

D(p, q) =
∑

x∈X

p(x) ln
p(x)
q(x)

If the estimated language model matches the true density

closely, R.E between them is low and is zero, if they match

exactly. R.E can be seen as the difference between the entropy

of the true density and the cross entropy of the estimated LM on

infinite test data. In this paper we will present a technique (Sec.

2) for convergence analysis of language models based on R.E

and show that it provides supplemental information to perplex-

ity. To enable this we develop an efficient implementation (Sec.

3) of R.E for n-gram language models which can be extended to

a number of other LM tasks (Sec. 5). Results and experimental

details are provided in section 4. We conclude with an analysis

of our results and directions for future work.

2. LM convergence analysis using R.E

In order to specify how close an estimated LM is from the true

density we need to define a distance measure. Perplexity[3][7]

can be a useful tool for this purpose. We can compute the per-

plexity of different language model estimates and select the one

which gives lowest perplexity on the test set as the closest match

to the true density. However it is difficult to interpret the results

since the lower bound of perplexity is not known beforehand. A

decrease in perplexity although indicative of progress does not

measure how far we are from the true density. Another issue is



that the test set is a small sample drawn from the true density

and does not cover the entire range of n-gram probabilities in the

true language model. Also since it is essentially a random sam-

ple from the true density, it does not represent the true density

accurately. If the true density is known, R.E of the LM estimate

can address the issues with perplexity based analysis. R.E can

provide local information in terms of convergence of different

probability estimates as well as a global match between the true

density and the approximating LM.

To study convergence of LM estimates we substitute the

hidden true language model with a representative language

model. Next we generate training data from this language

model by a process that can be seen as a random walk through

a graphical model which encapsulates the LM. The generated

data represents a sample drawn from the specified language

model. Language models can then be estimated from this ‘arti-

ficial’ data and R.E comparisons with the initial representative

language model can be carried out. This scheme can be seen as

a distribution resampling approach. The size of the ‘artificial’

training data can be increased to see how the R.E converges to

zero. An advantage of this scheme is that it is possible to gen-

erate a training corpus of arbitrary size without effecting the

underlying true data density. In conventional schemes the data

available for training is limited and to study convergence we can

only decrease the training set size. R.E comparisons across dif-

ferent classes of the LM such as proper nouns, functional words,

domain specific terms can be carried out separately to estimate

the confidence that can be placed in the LM estimates for these

groups. In the next section we will present a method for com-

puting R.E between n-gram language models efficiently.

3. Computation of relative entropy

Computing relative entropy between discrete distributions re-

quires density comparisons across all the possible symbols in

the alphabet. This implies that a direct R.E implementation

for a n-gram language models would require V n computations,

where V is the vocabulary size. This would make R.E compar-

isons for even medium sized trigram LM’s with 15-20K words

computationally prohibitive.

However real world n-gram language models are tree struc-

tured and a lot of the n-gram densities backoff to probabilities of

corresponding n−1 grams. Based on this tree like structure, we
provide a scheme which makes it possible to compute R.E be-

tween two LM’s in O(L) computations where L is the number
of language model terms actually present in the two LM’s. We

will express the language models as p(x/h) and q(x/h) where
h is the history on which the probability of seeing the word x is
conditioned; p being the reference LM and q being the LM be-

ing evaluated with respect to p. In case of convergence analysis
q is the language model estimated from artificial data.

The other symbols we are going to use are:

x: The current word
h: The history w1..wn−1

h′: The back off history w2..wn−1

bh: The back-off weight for p distribution for history h
b′h: The back-off weight for the q distribution
W : The vocabulary of the language model

R.E at level n

Dn =
∑

h∈H

ph

∑

x∈W

p(x/h) ln
p(x/h)
q(x/h)

(1)

We can divide the set of histories (H) at level n intoHs for

all h which exist as n − 1 gram and have a back-off weight"= 1
in the p or the q distribution. The complement set (Hs′ ) will

contain histories with a back-off 1. Hs′ corresponds to histories

not seen in either language model. Let

Dxh =
∑

x∈W

p(x/h) ln
p(x/h)
q(x/h)

(2)

Then

Dn =
∑

h∈Hs

phDxh +
∑

h∈Hs′

phDxh

=
∑

h∈H

phDxh′ +
∑

h∈Hs

phDxh −
∑

h∈Hs

phDxh′

Marginalizing w1

Dn = Dn−1 +
∑

h∈Hs

ph

(
Dxh − Dxh′

)
(3)

Dxh can be split into four terms depending on whether x/h is
defined in the p or the q distribution

Dxh=T1 + T2 + T3 + T4

T1: p(x/h) exists q(x/h) backs-off (Let x ∈ X1)

T2: p(x/h) backs-off q(x/h) exists (Let x ∈ X2)

T3: p(x/h) exists q(x/h) backs-off (Let x ∈ X3)

T4: p(x/h) backs-off q(x/h) backs-off (Let x ∈ X4)

T1 =
∑

x∈X1

p(x/h) ln
p(x/h)
q(x/h)

T2 = bh ln bh

∑

x∈X2

p(x/h′) + bh

∑

x∈X2

p(x/h′) ln
p(x/h′)
q(x/h)

T3 =
∑

x∈X3

p(x/h) ln
p(x/h)
q(x/h′)

− ln b′h
∑

x∈X3

p(x/h)

T4 =
∑

x∈X4

bhp(x/h′) ln
bhp(x/h′)
b′hq(x/h′)

= bh ln
bh

b′h

∑

x∈X4

p(x/h′) + bh

∑

x∈X4

p(x/h′) ln
p(x/h′)
q(x/h′)

+bh

∑

x∈X′
4

p(x/h′) ln
p(x/h′)
q(x/h′)

− bh

∑

x∈X′
4

p(x/h′) ln
p(x/h′)
q(x/h′)

= bh ln
bh

b′h

(
1 −

∑

x∈X′
4

p(x/h′)

)
+ bhDxh′

−bh

∑

x∈X′
4

p(x/h′) ln
p(x/h′)
q(x/h′)

Thus we are able to expressDxh, in terms of the LM terms

actually seen. UsingDxh computed in this fashion in (3) we get

a recursive formulation for R.E at level n using LM densities ac-

tually seen. Dxh can be computed using the base expression(2)

if p(x/h) or q(x/h) are mostly defined in the two LM’s for the
history h.

In the next section we describe our experimental setup for

using this recursive technique in measuring LM convergence.



4. Results

4.1. Reference language models

Our experiments were carried out using the SRI toolkit[5]. We

applied the resampling technique (Sec. 2) on two different lan-

guage models: An interpolated trigram LM for LVCSR based

on conversational speech(LM1) and a task adapted medical do-

main trigram language model(LM2). LM1 [9]was built from

manually transcribed 180 hours of conversational speech (1.7M

words), interpolated with language models built from Broadcast

News and Switchboard corpora (158M and 3.4M words, respec-

tively) . LM2 has a vocabulary of around 20K words with 700K

bigrams and 8M trigrams. This LM is used in the English part

of the transonics speech to speech translation system [6]. It was

built on a conversational trigram LVCSR LM adapted on semi-

structured patient doctor dialog data from a variety of sources.

4.2. Convergence analysis results

We generated ‘artificial data’ from the two LMs and built lan-

guage models on the generated data using Kneser-Ney smooth-

ing. The estimated LM and the reference LM were compared

using the recursive R.E measure (Sec. 3). We also carried out

LM estimation on multiple data sets of same size to measure the

variance of R.E. Variance of R.E was around 1% which implies

that R.E is consistent across different runs of the resampling

process. The plots ( See Fig. 1,2) compare well with the results

of [2].
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Figure 1: R.E vs training data size for LM1

For the two LMs, perplexity was also measured for the re-

sampled language models on held out data. As expected the

perplexity plots are similar to the R.E plots (See Fig. 3,4).

To observe how the language model convergence rate com-

pared across different word categories we estimated the in-class

R.E across different LM subsets grouped according to their

most common part of speech tag. As can be seen in table1 the

convergence of the LM to the reference varies widely across

the different word categories. Convergence for nouns (specifi-

cally proper nouns) was very poor compared to the functional

words such as verbs, adjectives etc. This would imply that in

weighted classifier merging a low LM weight should be chosen

for nouns and a higher weight for functional words. In addition

class based models could be advantageous for these words in

terms of estimation accuracy.
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Figure 2: R.E vs training data size for LM2
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Figure 3: Perplexity vs. training data size for LM1

4.3. Sparseness of resampled LMs

As can be seen in table 2, resampled LMs were much sparser

than the reference LM (LM2) even though the R.E and corre-

sponding perplexity figures were very low. The reference LM

has a perplexity of 11.39 with 8M trigrams.

LM pruning is one example application where LM reesti-

mation and recursive R.E computation can prove useful. In the

next section we discuss this in more detail.

5. Other applications of recursive R.E
computation

The recursive R.E computation scheme described in section 3

can be used to compare any two nested n-gram models which

Parts of speech Average R.E

Nouns 0.8

Proper nouns 3.4

Verbs 0.4

Adjectives 0.6

Determinants 0.3

Table 1: R.E across different parts of speech for LM2 corre-

sponding to artificial training data size of 20M words
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Figure 4: Perplexity vs. training data size for LM2

Generated data

(K words)

R.E Perplexity Number of tri-

grams

500 0.31 18 80K

1000 0.18 13.6 118K

2000 0.11 12 188K

5000 0.06 11.5 284K

10000 0.04 11.47 464K

20000 0.02 11.44 774K

Table 2: R.E, perplexity and number of trigrams across LMs

resampled from increasing generated data for LM2.

can even have different order. To address the issue of the vo-

cabulary mismatch between two models, the words not seen in

either language model can be mapped to the unknown word (<
unk >). Class based models can also be compared with minor
modifications to the recursive formulation given in section 3.

A simplified recursive R.E scheme for the case when a n-

gram is being approximated by a (n-1) gram was used in [4] to

prune language models. Using the recursive R.E scheme, this

idea can be extended to allow adjustments of the lower level

probability estimates to provide a better fit for the n-gram. We

also observed (Sec. 4) that resampling a LM using the gener-

ation and estimation process generates language models which

are substantially sparser than the reference LM. Since the R.E

measures the fit to the reference density we can use it as a guide

for estimating complexity vs. accuracy tradeoff in the resam-

pling scheme. In an information theoretic sense, this can be

seen as a quantization process where the R.E measures the bits

we are losing with respect to the reference LM.

Measurements of LM convergence can help in selecting the

vocabulary word or histories that can be combined in one class

to increase estimation robustness with minimal hit on accuracy.

Alternatively the RE criteria can be used to induce a split in

the training data in a decision tree like fashion to condition the

language model on topic or meta-data[10].

6. Conclusion

In this paper we presented a relative entropy based approach for

comparing language model estimation techniques and their con-

vergence properties using resampling. To make R.E compar-

isons between language models computationally efficient we in-

troduced a recursive R.E computation algorithm which utilizes

the tree structure of n-gram language models. As described in

the previous section this algorithm can be extended to compare

language models with different order and vocabulary.

We plan to merge the LM generation and estimation pro-

cesses to speed up the reestimation cycle. Instead of generating

an artificial data corpus and then estimating the resampled LM

using smoothed counting, we can combine the two processes

and generate resampled LMs directly.

Our experiments indicate that for a small tradeoff in

R.E, we can generate language models which are significantly

sparser. Thus, resampling seems to be a promising LM pruning

strategy. We are also evaluating the effectiveness of recursive

R.E computation as an LM distance measure for applications

like LM clustering and adaptation.
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