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Abstract

This paper extends the minimum Bayes-risk framework
to incorporate a loss function specific to the task and the
ASR system. The errors are modeled as a noisy channel
and the parameters are learned from the data. The result-
ing loss function is used in the risk criterion for decoding.
Experiments on a large vocabulary conversational speech
recognition system demonstrate significant gains of about
1% absolute over MAP hypothesis and about 0.6% abso-
lute over untrained loss function. The approach is gen-
eral enough to be applicable to other sequence recogni-
tion problems such as in Optical Character Recognition
(OCR) and in analysis of biological sequences.

1. Introduction

The performance of an automatic speech recognition is
measured using word error rate (WER). However, in most
speech recognition systems, the best hypothesis is chosen
using the maximum a-posteriori (MAP) estimator. Fur-
ther, the MAP estimator is computed using empirically
estimated component densities whose true forms are not
known, and is given by,

Ŵ = arg maxW P (W |O) = arg maxW P (O|W )P (W ).

Here,W is a hypothesis,P (O|W ) is the acoustic score,
andP (W ) is the prior likelihood as obtained from a lan-
guage model. When the true distributions are known,
improving the MAP estimate is guaranteed to improve
the sentence error rate, but not the word error rate. This
mismatch in cost function has been the subject of several
studies [10, 9, 5, 1]. In large vocabulary tasks, the word
error rate of the MAP hypothesis ranges anywhere from
20-50% depending on the complexity of the task. Even
at high word error rates, the list of most likely hypothe-
ses often contains the spoken sentence, and the hypothe-
sis closest to the spoken sentence (oracle) has word error
rate as low as 5%. The large potential gain in WER has
motivated several of the above mentioned studies. They
address the problem of picking a hypothesis from a set of
likely hypotheses with a word error rate lower than the
MAP estimator.
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In [9], a perceptron based algorithm is trained to
create an error-corrective language model whose feature
space consists of N-grams observed in the training data.
An iterative perceptron training algorithm is used to train
the weights, and the resulting model can be used to re-
score a lattice of hypotheses. The authors demonstrate
performance gain on Switchboard corpus. In a differ-
ent approach, [5] collapses the likely hypotheses into
“sausages” by clustering with heuristics rules that utilize
word identities and time boundaries. These “sausages”
are then used to learn rules that help select the hypothesis
with a low word error rate. They show that these rules
improve performance and can reveal deficiencies of the
ASR system.

The minimum Bayes-risk (MBR) decoding provides
an alternate framework to address the mismatch between
MAP and WER. The Bayes risk criterion is formulated
as follows. For a given task, a costC(W,W ′) is assigned
for picking a particular hypothesisW when the reference
is known to beW ′. During test, the total risk of picking
a hypothesisW is the expected cost over allW ′, and is
given by,

R(W ) =
′∑

W

C(W,W ′)P (W ′|O),

whereP (W ′|O) is the posterior probability ofW ′ given
the observation sequenceO. The optimal recognizer
picks a hypothesisW for which the riskR(W ) is mini-
mum. When all incorrect sentences are penalized equally,
irrespective of the number of words in error, the optimal
Bayes estimator reduces to the MAP estimator.

In ASR applications, the Bayes risk is computed over
a set of most likely recognized word strings represented
as an N-best list. So far, all studies have used string edit
(Levenshtein) distance to compute the cost between two
hypotheses strings [10, 1]. The Levenshtein distance, as
described in the next section, assigns a fixed cost for sub-
stitution, deletion and insertion, irrespective of the iden-
tities of the words involved. Such a cost function may not
be a good choice in several situations.

For example, consider the three hypotheses generated
by an ASR system: (1)Look who’s here, (2)Book is here,
and (3)Yeah right here. For the sake of illustration, as-
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sume that they have equal posterior probabilities. This
may happen in a noisy environment, where the first sen-
tence may be confusable with the second, and the third
may have a high bi-gram (prior) probability. The Lev-
enshtein distance between any two pairs of hypotheses is
the same, and therefore, the three strings are equally good
candidates for minimum Bayes-risk decoding. If it is
known a-priori (say, by examining the training data) that
“Look” often gets misrecognized as “Book”, and “who’s”
gets shortened as “is”, then the first hypothesis is a “bet-
ter” candidate. This notion can be incorporated into the
risk minimization criteria through a learned edit distance,
as described in the following section. Subsequent section
explains the experiments performed on a large vocabu-
lary task and the results obtained from them. Finally, the
contributions of the paper are summarized.

2. Bayes Risk With Learned Edit Distance

2.1. Untrained Edit Distance

Let Σ be a finite set, a vocabulary, whose elements are
words, andε denote a null symbol. An elementary edit
operation is a pair(a, b) ∈ (Σ∪{ε})×(Σ∪{ε})\{(ε, ε)}.
For clarity, it is also denoted bya7→b. An alignmentA of
two stringss1 ands2 is a sequence(a1 7→b1, . . . , ah 7→bh)
of edit operations such thats1 = a1, . . . , ah ands2 =
b1, . . . , bh, with possible insertions ofε. To each edit
operation a weight functionδ assigns a real number
δ(a7→b). The weightδ(A) of an alignment A is defined
as δ(A) =

∑
a7→b∈A δ(a7→b), and the edit distance of

two strings is the minimum weight over all alignments
of the string,Du(s1, s2) = minA δ(A). Note that the
alignmentA associated with this minimum is invariant to
scaling ofδ by a constant, a property that will be used
later in this work.

If δ(a7→a) = 0, δ(a7→b) = 1,∀a 6= b, thenδ is the
unit weight function. Another popular weight function
which is often used in scoring ASR output has the fol-
lowing weights:δ(a7→a) = 0, δ(a7→ε) = 3, δ(ε7→b) =
3, δ(a7→b) = 4, ∀a 6= b. In the rest of the paper, edit dis-
tance derived from such pre-defined costs will be referred
to as the untrained edit distance.

2.2. Learned Edit Distance: Noisy Channel Model

Instead of assigning a pre-defined cost to edit operations,
a stochastic model can be learned from the data.

To motivate this approach, consider the ASR system
as a noisy channel. LetX = x1, x2, . . . , xM be the
spoken word sequence corresponding to the input wave-
form. This input word sequence enters the ASR chan-
nel and exits in the form of corrupted word sequence,
Y = y1, y2, . . . , yN . The ASR errors could have mul-
tiple sources such as incorrect form of acoustic/language
model, bad estimation of its parameters and the mismatch
in cost functions. Now, the problem is to learn a model
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Figure 1: Probabilistic finite state transducer to model
noisy channel.

that maps the corrupted sequence to the actual spoken
word sequence,Y 7→X.

The noisy channel can be modeled using a sim-
ple probabilistic finite state transducers or a Markov
chain with no input memory [2]. For each word
wi in the vocabulary, four types of transitions are
created, as shown in the Figure 1. They correspond
to the transitions(wi 7→wi), (wi 7→wj), (ε7→wj) and
(wi 7→ε) with weights P (wi|wi), P (wj |wi), P (ε|wj)
and P (wi|ε), respectively. In this work, the cost
of elementary edit operation is assigned thelog of
these weights, as in [8]. As in edit distance, to
enforce zero cost for a distortionless channel, a nor-
malization is applied to the model,δ(wi 7→wj) =
− log P (wj |wi) + log P (wi|wi), δ(wi 7→wi) =
0, δ(wi 7→ε) = − log P (ε|wi) + log P (wi|wi). Since
this is a simple Markov chain, the parameters can
be estimated using Expectation Maximization or the
corresponding Viterbi approximation.

In a practical ASR task, the vocabulary is large
and the training data is limited, making it difficult to
estimate all the parameters robustly. In such a sce-
nario, robust estimates can be obtained only for the
most frequent words. For the rest, parameters need
to be shared to obtain good estimates. An extreme
scenario consists of grouping the transitions into four
sets: {(a, a)}, {(a, b) ∀a6=b}, {(ε, b)} and {(a, ε)}. If
the probabilities are denoted byPc, Ps, Pi andPd, re-
spectively, then, the stochastic model corresponds to
the edit distance with fixed costs, whereδ(a7→a) =
0, δ(a7→b) = − log Ps + log Pc, and δ(a7→ε) =
− log Pd+log Pc. The alignment with minimum edit dis-
tance corresponds to the maximum likelihood alignment
of the stochastic model. Thus, the Levenshtein distance
can be seen as an instance of this noisy channel model.
The complexity of the noisy channel model can be in-
creased with the order of Markov chain.

2.3. Decoding with Learned Edit Distance

The noisy channel model captures task- and decoder-
specific confusions, and this knowledge can be used to
pick better candidate hypotheses. To do so, the Bayes
risk criterion is computed using the learned edit distance,
Dl(W,W ′) and the hypothesis with least risk is picked.

Using the noisy channel model, the minimum Bayes-
risk decoding can be seen as a variant of probabilis-
tic decoding with unconstrained costs. In a probabilis-
tic framework, the best hypothesis can be computed as,



Submitted to InterSpeech 2004 3

arg maxW

∑
W ′ P (W |W ′)P (W ′|O). Here,P (W |W ′)

replacesC(W,W ′) of MBR and imposes additional
probabilistic constraints on the costs, that the conditional
probabilities for a given wordWi sum to one. In this
work, the weights are normalized negativelog probabili-
ties and so are not treated as probabilities.

For any two hypotheses, the learned edit distance
can be computed using the Viterbi algorithm. The edit
distance model can be implemented as a finite state
transducerT . To obtain the edit distance between two
hypothesesDl(W,W ′) and to generate the best align-
ment, composeWoToW ′ and compute the shortest path
through the resultant transducer. These operations can
be performed using publicly available AT&T’s FSM
toolkit [6]. The Bayes risk can then be computed over
the set of all hypotheses to locate one with the least risk.

3. Experiments

Experiments were performed on a large vocabulary cor-
pus consisting of spontaneously spoken testimonies in
Czech language, which is subset of the multilingual
MALACH corpus [7].

3.1. Task

For acoustic modeling, the training set is about 84 hours
of speech, comprising segments from 336 speakers (145
male and 191 females) and 552k spoken words from a
vocabulary of 42k. Unlike other comparable corpora, this
corpus contains a relatively high percentage of colloquial
words – about 9% of vocabulary and 7% of tokens. The
test set is about 2 hrs of speech, consisting of utterances
from 5 male and 5 female speakers whose speech was
excluded from the training set. It contains about 15k word
tokens. Unlike other English corpora where OOV rates
are of under 2%, the test set has a high OOV rate of about
6%.

Acoustic models for these experiments were made of
3-state HMM triphones, where each state is modeled by
16 component Gaussian mixture with diagonal covari-
ances. A more complex 176-component HMM was used
to model silence [7].

The language model was trained on two sets of tran-
scripts. The first set is from the testimonies in the training
set and is a relatively small set. The second set consists
of portions from the Czech National Corpus which were
selectively sampled to improve the language model. A
bi-gram language model with Katz back-off was used for
all the experiments. Further details of acoustic and lan-
guage model can be found in [7]. The acoustic models
from [7] were further improved using several iterations
of Maximum Mutual Information Estimation (MMIE) to
provide the baseline for the experiments reported in this
paper.
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Figure 2: Histogram of costs of edit operations learned
from the corpus.

3.2. Parameter Estimation

To learn the parameters of the stochastic model of
edit distance, the Viterbi approximation was used [8].
The edit distance model was initialized using uniform
weights. The training procedure consists of decoding the
training data, collecting the counts, and estimating the
empirical edit costs.

First, the training data is decoded using conditions
similar to the test setup. Following the observations in [9]
about the need to exclude the contribution of the utterance
being decoded from the language model, the training data
was divided up into 20 sets. A set of language models
were build holding one set out at a time. In all cases,
the selectively sampled Czech National Corpus was also
used appropriately. Each set was then decoded with a lan-
guage model that excluded transcripts from that set. The
same MMIE acoustic model was used for decoding all the
training data. Thus, the MAP hypothesis was generated
for each utterance in the training set.

For each utterance, the edit distance between the
MAP hypothesis and the reference transcript is com-
puted and the corresponding alignment is saved. The
counts for all elementary edit operations were collected
for the entire training data. Counts for words that occur
fewer than 8 times were ignored, as is often done in lan-
guage modeling. Subsequent experiments showed that
the performance is not sensitive to this threshold. The
cost of an elementary edit operation was estimated as
in δ(w 7→w′) = − log P (w|w′) + log P (w′|w′). All in
all, about 19k edit costs were estimated from the train-
ing data. Most edit operations have a cost that occupy a
range from zero to 9.5, as shown in Figure 2. In a few
cases, the words preferred substitution or deletions more
than identity, thus have a negative cost associated with
them.

For edit operations that were not represented ade-
quately in the training data, the standard fixed cost was
assigned as a back-off. Since the best alignments from
edit distance are scale invariant, the default costs were
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scaled so that they were slightly above the range of
learned costs. Specifically, the back-off cost of substi-
tution, deletion, and insertion were set to 9, 9 and 12,
respectively.

3.3. Testing

The MBR decoding was applied on a N-best list of 50
and 200 hypotheses on the test set, which were gener-
ated using the MMIE models and without speaker adap-
tation. The likelihoods were squashed by dividing it with
the grammar scale factor (14.0) and the posteriors were
computed over the N-best. Words such as silence which
do not get scored in the WER were removed. The results
of MBR decoding were compared with the baseline MAP
estimator, and are shown in Table 1.

Decoder Word Error Rate

1. MAP 45.4
N=50 N=200

2. MBR with untrained edit distance 45.2 45.0
3. MBR with learned edit distance 44.5 44.4

Table 1: Comparison of MBR decoding using edit dis-
tance with fixed weights and weights learned from the
task.

On an N-best list of 200 hypotheses, the standard
MBR with untrained edit distance improved performance
by 0.4% over MAP. This decoder chose hypotheses other
than the MAP hypotheses about 33% of the time. The
MBR decoder with learned edit distance preferred such
hypotheses about twice the number of times (approx.
61%). A significant gain of 1% absolute was observed
over MAP. The computational cost of MBR rises expo-
nentially with number of hypotheses, increasing by about
16-fold from 50 to 200-hypotheses set. Using learned edit
distance, much of the improvement can be obtained from
the smaller 50-hypotheses set. This makes it possible to
improve performance with MBR decoding even when the
computational resources are significantly limited.

4. Conclusions

This paper extends the minimum Bayes-risk (MBR)
framework to pick a hypothesis with word error rate
lower than the MAP hypothesis. Systematic errors intro-
duced by an ASR system are modeled as a noisy channel
with no input memory. This was then incorporated into a
learned edit distance and utilized in the Bayes risk crite-
rion. The experiments on large vocabulary task demon-
strates significant gains of about 0.6% and 1% over stan-
dard MBR and MAP decoding respectively. Further, ex-
periments show that the most of the gain can be obtained
even with set of hypotheses as small as 50. This makes
it possible to improve ASR performance even when the
computational power is limited and evaluating large sets

of hypotheses is not affordable.
The minimum Bayes-risk decoding with learned edit

distance can be applied to tasks other than speech recog-
nition such as machine translation where Bayes-risk
framework has been found to be useful [3].
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