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2 Models for Czech ASR

1 Introduction

Automatic transcription of Czech testimonials in MALACH posses a unique problem and a new
opportunity as documented extensively elsewhere [2]. Briefly, the problem of automatic transcrip-
tion is made difficult because the speech is largely from older speakers, often speaking with heavy
accent on an emotionally charged topic. The corpus, however, provides a challenge which reflects
the complexities of transcribing real-world spoken documents in large number of languages.

The work performed on the MALACH project is described in three sections. The first section
describes the development of an automatic speech recognition (ASR) system for transcribing
the testimonies and the two releases of transcripts. The second and third sections delve into
new models developed to correct systematic errors in ASR on a task using a generative and a
discriminative framework respectively. These models are general enough that they can be applied
to a number of tasks beyond MALACH. The third section points out the educational benefits
from this NSF project.

2 Automatic Transcription

Automatic transcription of the speech was undertaken to provide access to the large collection
of interviews in the MALACH corpus. The task consists of generating a word-level transcript of
speech from both the interviewer and the interviewee. Additionally, time marks corresponding
approximately to the beginning and the end of words are needed to locate the segment of interest
to a user.

A state-of-the-art system was developed to transcribe the Czech testimonies automatically,
which is described in 2.1. Initially, the system was designed to generate the spoken words verbatim.
Czech suffers from diglossia in that written words could have a number of informal variants, which
can confound a user who needs to formulate a query for an spoken document retrieval system.
This concern was addressed by modifying the ASR system to produce the transcripts in the formal
variant of the language. In other words, the ASR system was taxed with the burden of capturing
all the variants of a written form that may be encountered in a spoken utterance. This unusual
demand on the ASR system created a hitherto unforeseen side-effect on the discriminative training
of acoustic models, which is described further in Section 2.2 along with various other design trade-
offs.

2.1 System Description

The baseline ASR system uses perceptual linear prediction (PLP) features which was computed
on 44KHz input speech at the rate of 10 frames per second, and was normalized to have zero mean
and unit variance per speaker. The acoustic models were made of 3-state HMM triphones, whose
observation distributions were clustered into about 4500 allophonic (triphone) states. Each state
was modeled by a 16 component Gaussian mixture with diagonal covariances. The parameters
of the acoustic models were initially estimated by maximum likelihood and then refined by five
iterations of maximum mutual information estimation (MMI).

For the first pass decoding, a language model was created by interpolating the in-domain model
(weight=0.75), estimated from 600k words of transcripts with an out-of-domain model, estimated
from 15M words of Czech National Corpus [12]. Both models were parametrized by a trigram
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2. Automatic Transcription 3

language model with Katz back-off. The decoding graph was built by composing the language
model, the lexical transducer and the context-dependent transducer (phones to triphones) into a
single compact finite state machine.

The baseline ASR system decodes test utterance in two passes. A first pass decoding was
performed with CML/MMIE acoustic models, whose output transcripts were bootstrapped to es-
timate two maximum likelihood linear regression transforms for each speaker using five iterations.
A second pass decoding wass then performed with the new speaker adapted acoustic models.

The system was developed mostly using public domain software. The acoustic models were
trained mostly using Hidden Markov Model Toolkit (HTK) from Cambridge University. The
toolkit was augmented with a module to train acoustic model discriminatively using conditional
maximum likelihood (CML), popularly also known as maximum mutual information (MMI), es-
timation. The CML/MMI training requires several lattice operations and our implementation
exploits the modularity and efficiency afforded by the finite state machine (FSM) toolkit from
AT&T [10]. The decision tree-based phone-to-allophone mapping, generated by the HTK software,
were transformed into an equivalent context-dependency transducer. Decoding was performed us-
ing a compact static finite state transducer, generated from the context-dependent transducer,
dictionary transducer and the language model acceptor as outlined in [11]

2.2 Trade-Offs in System Design

During the system development, a number of algorithmic choices were investigated to design an
efficient and accurate system. A sample of such design choices are enumerated below.

1. Does the bias in language model, due to the inclusion of transcripts of acoustic training data,
hurt the performance of an acoustic model trained using CML/MMI criterion?

Several previous studies (e.g. [16, 14]) have observed that the decoding of the training data
is significantly less biased when the reference transcripts are excluded from the language
model, particularly, in tasks where the in-domain corpus is small, such as in MALACH. To
test the impact of holding-out the transcripts from the language model, a 20-fold jack-knife
procedure was evaluated in the CML/MMI training. As illustrated in Figure 1, a small
performance improvement was observed, however, this was largely confined to the early
iterations of MMI. Thus, the standard but counter-intuitive practice of including training
utterances in LM does not appear to degrade the performance significantly.

2. What is the optimal order of n-gram in CML/MMI training?

The optimal order of n-gram for generating the lattices and for estimating the model pa-
rameters needs to empirically determined for each task [18]. For MALACH, bigram and
unigram language models were tested for CML/MMI estimation. Unigram language model
provides an improvement over bigram models of about 0.1 to 0.2 % absolute gain. However,
this comes with a 10% increase in computation cost, most of which is incurred in generating
the denominator lattice.

3. Is a presegmentation step necessary in transcribing an entire channel of speech from an
interview tape?

In tasks such as broadcast news, the speech is first segmented into utterances before tran-
scribing the utterances. This is necessary for discarding segments consisting entirely of
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4 Models for Czech ASR
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Figure 1: Comparison of ASR performance (WER) using MMI-trained acoustic models trained
with standard LM and held-out LM.

intervening filler music or ads, as well as for grouping speakers appropriately while applying
speaker adaptive transforms on the acoustic models. Such concerns are unlikely to pose as
much problem in MALACH corpus and the speech is largely from one speaker in most tapes.
Consequently, the transcription may not need presegmentation. This was investigated in a
set of controlled experiments where the decoding was performed with manual segmenta-
tion (ManSeg) and without any segmentations (Std). Additionally, different settings were
investigated for decoding without segmentation. In one instance, the language model was
configured to allow the tape to be decoded as multiple utterances (ClosureLM), unlike the
standard configuration where all of input speech was regarded as a single utterance. In
another instance, the efficiency of the decoder was evaluated when partial hypotheses was
continually generated during Viterbi at immortal nodes, nodes where only a lone word hy-
pothesis survives the pruning (ImmortalVit). The Table 1 shows the average and worst case
word error rate measured across speakers along with the real-time factor for decoding.

The word error rate increases only by about 2% when the manual segmentations are not
used. Further, the different configurations of language model and search does not impact the
word error rate significantly. However, when the input is decoded using a language model
with closure, the number of hypotheses evaluated in the search increases significantly and
consequently a higher computation cost is incurred. However, the resulting improvement in
average word error rate is marginal at best and does not justify the additional computation
cost.
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2. Automatic Transcription 5

Configuration Average WER Worst WER Time
ManSeg 44.6 53.8 14.4
Std 46.8 57.7 14.7
ClosureLM 46.7 57.6 15.8
ImmoralVit 46.8 57.4 14.4

Table 1: Effect of decoding an entire interview tape with/without manual segmentations, and for
different configurations of language model and search.

Most automatic segmentation system require carefully tuning of operating threshold, and
wrong settings could cost significant increase in deletion or insertion, potentially much more
than the 2% loss seen in these experiments. Based on these experiments, the automatic
transcription of the interview tapes were performed without presegmentation using standard
language model and search configurations.

4. Is cepstral mean and variance normalization beneficial for decoding interviews?

Cepstral mean and variance normalization is often applied as a standard feature normaliza-
tion procedure, without giving much thought to it. This normalization provides about 0.5%
absolute gain on manually segmented test set in MALACH. However, cepstral variance nor-
malization causes significant problem when applied on an entire interview, as experiments
on MALACH revealed. The reason for this discrepancy is the mismatch in the training and
testing conditions. For a successful flat start, the acoustic training data needs segments with
low amounts of silence or non-speech events. However, while decoding entire interviews, a
large number of frames contribute very little to the variance, and as a result the estimated
variance is much smaller than without silences. Since this normalization effects every frame
of the input speech, the ASR performance takes a big hit. The cepstral mean normalization
does not suffer from this problem and can be used safely to obtain consistent gains.

5. What are the trade-offs between multiple pronunciations and discriminative training?

As mentioned earlier, for languages that suffer diglossia such as Czech it may be necessary
to produce ASR output in the formal form, thus the acoustics models need to represent
the informal variants implicitly. This mapping can be most conveniently represented in
the lexicon. However, depending on the extent of the diglossia, the resulting dictionary
could potentially contain large number of pronunciation variants. For example, the Czech
portion of MALACH contains a relatively high percentage of colloquial words – about 9%
of the vocabulary and 7% of the tokens. When these informal forms are subsumed in the
lexicon, common words contain several pronunciation variants, and a few have as many as
14 variants.

CML/MMI-based training attempts to maximize the conditional probability of the refer-
ence transcripts given the lattice of possible hypotheses. When common words contain large
number of pronunciation variants, there is a danger that the numerator and the denomi-
nator lattices start resembling each other at the phone and model level. This renders the
CML/MMI estimation less effective as revealed in experiments on MALACH. An initial ASR
system was developed to produce transcripts verbatim. This system contained very few mul-
tiple pronunciations and the CML/MMI estimation provided an absolute gain of 3.4%. The
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6 Models for Czech ASR

estimation procedure converged in about three iterations. Subsequently, the ASR system
was redesigned to generate formal variants. When the informal forms were included in the
dictionary to allow most possible variants, the gains from CML/MMI diminished to 1.7%
absolute and the estimation took at least six iterations to converge. Subsequently, a large
number of pronunciations variants, about 7% in all, were pruned automatically based on
their occurrence in training data. The resulting lexicon improved the gain from CML/MMI
training to 2.6% absolute, but still required about six iterations to converge.

The gains observed from various system design trade-offs are summarized in Table 2. The
results are measured on a 2-hour test sets with no speakers overlapping with the training data.

System 1-best
(a) ML + Bigram LM 42.8
(b) (a) + CMN/CVN 42.5
(c) ML + CMN/CVN + Trigram LM 40.3
(d) ML + New Silence Phones 39.2
(e) (d) + CML/MMI Estimation 36.7
(f) (e) + MLLR-2Xfm 35.8

Table 2: The performance of the baseline ASR system is reported, showing the improvements
from various stages of system development.

The initial system consisted of acoustic models trained with maximum likelihood estimation
and bigram language model. Cepstral mean and variance normalization provided a gain of 0.5%
gain as expected. Replacing the bigram language model with the interpolated trigram language
model improved the performance by about 2.2% absolute. The standard HTK recipe suggests sep-
arating silences into two categories: a context-transparent short silence and an end-of-utterance
long silence. Simplifying the representation of silence with three state HMM containing large num-
ber of mixture components improved performance by about 1% absolute. Subsequent CML/MMI
training with a pruned dictionary reduced word error rate by about 2.5% absolute, and speaker
adaptation using two transforms, estimated with six iterations, gave a further gain of about 1%
absolute. The word error rate of the complete system is still significantly higher than that of other
popular tasks such as Switchboard. The gap in performance largely reflects the difficulty of tran-
scribing the peculiarities of speech from the elderly in MALACH corpus. The baseline CML/MMI
estimated system was used for generating the final transcripts. The transcription accuracy was
measured on a set of 10 complete interview tapes and was found to be about 60%.

3 Corrective Models using Minimum Bayes Risk

Often the output of ASR system contains systematic errors specific to a task and an ASR system.
These errors are best modeled in a post-processing step, where the parameters of the models are
entirely focused on correcting the errors rather than capturing the interaction with the acoustic
and language modeling components. Two such corrective modeling strategies were investigated on
MALACH task. The first approach models the word level confusions using a generative framework.
The second approach uses a simple log-linear model which is trained discriminatively using a
maximum entropy criterion and can incorporate a large variety of features including morphology
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3. Corrective Models using Minimum Bayes Risk 7

and acoustic cues. The following sections describe the crux of the two approaches and the details
can be found in [16] and [15] respectively.

Briefly, the minimum Bayes-risk approach can be extended to model systematic errors specific
to the task and the ASR system. The standard formulation uses an uninformative edit distance as
a loss function. Instead, the errors are modeled as a noisy channel and the parameters of the new
edit distance are learned from the data. The resulting loss function is used in the risk criterion
for decoding. Experiments on MALACH demonstrate significant gains of about 1% absolute over
MAP hypothesis and about 0.6% absolute over untrained loss function. The approach is general
enough to be applicable to other sequence recognition problems such as in Optical Character
Recognition (OCR) and in analysis of biological sequences.

In large vocabulary tasks, the word error rate of the maximum aposteriori (MAP) hypothesis
ranges anywhere from 20-50% depending on the complexity of the task. Even at high word error
rates, the list of most likely hypotheses often contains the spoken sentence, and the hypothesis
closest to the spoken sentence (oracle) has word error rate as low as 5%. The large potential gain
in WER has motivated several studies to address the problem of picking a hypothesis from a set
of likely hypotheses with a word error rate lower than the MAP estimator.

The minimum Bayes-risk (MBR) decoding provides a framework to pick a hypothesis with
lower WER than the MAP solution. The Bayes risk criterion is formulated as follows. For a given
task, a cost C(W,W ′) is assigned for picking a particular hypothesis W when the reference is
known to be W ′. During test, the total risk of picking a hypothesis W is the expected cost over
all W ′, and is given by,

R(W ) =
′∑

W

C(W,W ′)P (W ′|O),

where P (W ′|O) is the posterior probability of W ′ given the observation sequence O. The optimal
recognizer picks a hypothesis W for which the risk R(W ) is minimum. When all incorrect sentences
are penalized equally, irrespective of the number of words in error, the optimal Bayes estimator
reduces to the MAP estimator.

In ASR applications, the Bayes risk is computed over a set of most likely recognized word strings
represented as an N-best list. So far, all studies have used string edit (Levenshtein) distance to
compute the cost between two hypotheses strings [17, 5]. The Levenshtein distance, as described
in the next section, assigns a fixed cost for substitution, deletion and insertion, irrespective of
the identities of the words involved. Such a cost function may not be a good choice in several
situations.

For example, consider the three hypotheses generated by an ASR system: (1) Look who’s here,
(2) Book is here, and (3) Yeah right here. For the sake of illustration, assume that they have equal
posterior probabilities. This may happen in a noisy environment, where the first sentence may
be confusable with the second, and the third may have a high bi-gram (prior) probability. The
Levenshtein distance between any two pairs of hypotheses is the same, and therefore, the three
strings are equally good candidates for minimum Bayes-risk decoding. If it is known a-priori (say,
by examining the training data) that “Look” often gets misrecognized as “Book”, and “who’s”
gets shortened as “is”, then the first hypothesis is a “better” candidate. This notion can be
incorporated into the risk minimization criteria through a learned edit distance, as described in
the following section.
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Figure 2: Probabilistic finite state transducer to model noisy channel.

3.1 Untrained Edit Distance

Let Σ be a finite set, a vocabulary, whose elements are words, and ε denote a null symbol. An
elementary edit operation is a pair (a, b) ∈ (Σ ∪ {ε}) × (Σ ∪ {ε})\{(ε, ε)}. For clarity, it is also
denoted by a7→b. An alignment A of two strings s1 and s2 is a sequence (a1 7→b1, . . . , ah 7→bh)
of edit operations such that s1 = a1, . . . , ah and s2 = b1, . . . , bh, with possible insertions of ε.
To each edit operation a weight function δ assigns a real number δ(a7→b). The weight δ(A) of
an alignment A is defined as δ(A) =

∑
a7→b∈A δ(a7→b), and the edit distance of two strings is

the minimum weight over all alignments of the string, Du(s1, s2) = minA δ(A). Note that the
alignment A associated with this minimum is invariant to scaling of δ by a constant, a property
that will be used later in this work.

If δ(a7→a) = 0, δ(a7→b) = 1,∀a 6= b, then δ is the unit weight function. Another popular
weight function which is often used in scoring ASR output has the following weights: δ(a7→a) =
0, δ(a7→ε) = 3, δ(ε7→b) = 3, δ(a7→b) = 4, ∀a 6= b. In the rest of the paper, edit distance derived
from such pre-defined costs will be referred to as the untrained edit distance.

3.2 Learned Edit Distance: Noisy Channel Model

Instead of assigning a pre-defined cost to edit operations, a stochastic model can be learned from
the data.

To motivate this approach, consider the ASR system as a noisy channel. Let X = x1, x2, . . . , xM

be the spoken word sequence corresponding to the input waveform. This input word sequence
enters the ASR channel and exits in the form of corrupted word sequence, Y = y1, y2, . . . , yN . The
ASR errors could have multiple sources such as incorrect form of acoustic/language model, bad
estimation of its parameters and the mismatch in cost functions. Now, the problem is to learn a
model that maps the corrupted sequence to the actual spoken word sequence, Y 7→X.

The noisy channel can be modeled using a simple probabilistic finite state transducers or a
Markov chain with no input memory [1]. For each word wi in the vocabulary, four types of transi-
tions are created, as shown in the Figure 2. They correspond to the transitions (wi 7→wi), (wi 7→wj), (ε7→wj)
and (wi 7→ε) with weights P (wi|wi), P (wj |wi), P (ε|wj) and P (wi|ε), respectively. The cost of el-
ementary edit operation is assigned the log of these weights, as in [13]. As in edit distance, to
enforce zero cost for a distortion-less channel, a normalization is applied to the model, δ(wi 7→wj) =
− log P (wj |wi) + log P (wi|wi), δ(wi 7→wi) = 0, δ(wi 7→ε) = − log P (ε|wi) + log P (wi|wi). Since this
is a simple Markov chain, the parameters can be estimated using Expectation Maximization or
the corresponding Viterbi approximation.

In a practical ASR task, the vocabulary is large and the training data is limited, making
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3. Corrective Models using Minimum Bayes Risk 9

it difficult to estimate all the parameters robustly. In such a scenario, robust estimates can
be obtained only for the most frequent words. For the rest, parameters need to be shared to
obtain good estimates. An extreme scenario consists of grouping the transitions into four sets:
{(a, a)}, {(a, b) ∀a6=b}, {(ε, b)} and {(a, ε)}. If the probabilities are denoted by Pc, Ps, Pi and
Pd, respectively, then, the stochastic model corresponds to the edit distance with fixed costs,
where δ(a7→a) = 0, δ(a7→b) = − log Ps + log Pc, and δ(a7→ε) = − log Pd + log Pc. The alignment
with minimum edit distance corresponds to the maximum likelihood alignment of the stochastic
model. Thus, the Levenshtein distance can be seen as an instance of this noisy channel model.
The complexity of the noisy channel model can be increased with the order of Markov chain.

3.3 Decoding with Learned Edit Distance

The noisy channel model captures task- and decoder-specific confusions, and this knowledge can
be used to pick better candidate hypotheses. To do so, the Bayes risk criterion is computed using
the learned edit distance, Dl(W,W ′) and the hypothesis with least risk is picked.

Using the noisy channel model, the minimum Bayes-risk decoding can be seen as a variant of
probabilistic decoding with unconstrained costs. In a probabilistic framework, the best hypothesis
can be computed as, arg maxW

∑
W ′ P (W |W ′)P (W ′|O). Here, P (W |W ′) replaces C(W,W ′) of

MBR and imposes additional probabilistic constraints on the costs, that the conditional probabil-
ities for a given word Wi sum to one. The weights are normalized negative log probabilities and
so are not treated as probabilities.

For any two hypotheses, the learned edit distance can be computed using the Viterbi algo-
rithm. The edit distance model can be implemented as a finite state transducer T . To obtain the
edit distance between two hypotheses Dl(W,W ′) and to generate the best alignment, compose
WoToW ′ and compute the shortest path through the resultant transducer. These operations can
be performed using publicly available AT&T’s FSM toolkit [10]. The Bayes risk can then be
computed over the set of all hypotheses to locate one with the least risk.

3.4 Parameter Estimation

To learn the parameters of the stochastic model of edit distance, the Viterbi approximation was
used [13]. The edit distance model was initialized using uniform weights. The training procedure
consists of decoding the training data, collecting the counts, and estimating the empirical edit
costs.

First, the training data is decoded using conditions similar to the test setup. Following the
observations in [14] about the need to exclude the contribution of the utterance being decoded
from the language model, the training data was divided up into 20 sets. A set of language models
were build holding one set out at a time. In all cases, the selectively sampled Czech National
Corpus was also used appropriately. Each set was then decoded with a language model that
excluded transcripts from that set. The same MMIE acoustic model was used for decoding all the
training data. Thus, the MAP hypothesis was generated for each utterance in the training set.

For each utterance, the edit distance between the MAP hypothesis and the reference tran-
script is computed and the corresponding alignment is saved. The counts for all elementary edit
operations were collected for the entire training data. Counts for words that occur fewer than 8
times were ignored, as is often done in language modeling. Subsequent experiments showed that
the performance is not sensitive to this threshold. The cost of an elementary edit operation was
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Figure 3: Histogram of costs of edit operations learned from the corpus.

estimated as in δ(w 7→w′) = − log P (w|w′) + log P (w′|w′). All in all, about 19k edit costs were
estimated from the training data. Most edit operations have a cost that occupy a range from zero
to 9.5, as shown in Figure 3. In a few cases, the words preferred substitution or deletions more
than identity, thus have a negative cost associated with them.

For edit operations that were not represented adequately in the training data, the standard
fixed cost was assigned as a back-off. Since the best alignments from edit distance are scale
invariant, the default costs were scaled so that they were slightly above the range of learned costs.
Specifically, the back-off cost of substitution, deletion, and insertion were set to 9, 9 and 12,
respectively.

3.5 Evaluation

The MBR decoding was applied on a N-best list of 50 and 200 hypotheses on the test set, which
were generated using the MMIE models and without speaker adaptation. The likelihoods were
squashed by dividing it with the grammar scale factor (14.0) and the posteriors were computed
over the N-best. Words such as silence which do not get scored in the WER were removed. The
results of MBR decoding were compared with the baseline MAP estimator, and are shown in
Table 3.

On an N-best list of 200 hypotheses, the standard MBR with untrained edit distance improved
performance by 0.4% over MAP. This decoder chose hypotheses other than the MAP hypotheses
about 33% of the time. The MBR decoder with learned edit distance preferred such hypotheses
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4. Discriminative Log-Linear Models 11

Decoder Word Error Rate
1. MAP 45.4

N=50 N=200
2. MBR with untrained edit distance 45.2 45.0
3. MBR with learned edit distance 44.5 44.4

Table 3: Comparison of MBR decoding using edit distance with fixed weights and weights learned
from the task.

about twice the number of times (approx. 61%). A significant gain of 1% absolute was observed
over MAP. The computational cost of MBR rises exponentially with number of hypotheses, in-
creasing by about 16-fold from 50 to 200-hypotheses set. Using learned edit distance, much of
the improvement can be obtained from the smaller 50-hypotheses set. This makes it possible to
improve performance with MBR decoding even when the computational resources are significantly
limited.

The minimum Bayes-risk decoding with learned edit distance can be applied to tasks other
than speech recognition such as machine translation where Bayes-risk framework has been found
to be useful [8]. One limitation of this approach, however, is that the model needs to parameterize
the space of all possibilities and resorts to smoothing techniques to account for observations not
seen in the training data. This poses a significant hurdle when the number of discrete input
symbols increases by a magnitude, such as when modeling morphological features. To tackle such
situations, an alternative discriminative model was investigated.

4 Discriminative Log-Linear Models

Briefly, a discriminative log-linear model picks a hypothesis with maximum score, where the
score is computed over a range of features from the hypothesis. The features can be categorical
or continuous and this provides an opportunity to model a variety of cues for correcting errors,
including morphology and acoustics. As a first step, a corrective model consisting of morphological
and word n-gram features was investigated. Experiments on the Czech portion of the MALACH
corpus demonstrate performance gain of about 1.1–1.5% absolute in word error rate, wherein
morphological features contribute about a third of the improvement. A simple feature selection
mechanism based on χ2 statistics is shown to be effective in reducing the number of features by
about 70% without any loss in performance, making it feasible to explore yet larger feature spaces.

High inflection in a language is generally correlated with some level of word-order flexibility.
Morphological features either directly identify or help disambiguate the syntactic participants of a
sentence. Inflectional morphology works as a proxy for structured syntax in a language. Modeling
morphological features in these languages not only provides an additional source of information
but can also alleviate data sparsity problems.

Czech speech recognition needs to deal with two sources of errors which are absent in English,
namely, the inflectional morphology and the differences in the formal (written) and colloquial
(spoken) forms. Table 4 presents an example output of our speech recognizer on an utterance from
a Holocaust survivor, who is recounting General Romel’s desert campaign during the Second World
War. In this example, the feminine past-tense form of the Czech verb for to be is chosen mistakenly,
which is followed by a sequence of incorrect words chosen primarily to maintain agreement with
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12 Models for Czech ASR

REF no Jež́ı̌s to už byl Romel hnedle před Alexandríı
gloss well Jesus by that time already was Romel just in front of Alexandria
translation oh Jesus, Romel was already just in front of Alexandria by that time

HYP no Jež́ı̌s to už byla sama hned lepš́ı Alexandrie
gloss well Jesus by that time already (she) was herself just better Alexandria
translation oh Jesus, she was herself just better Alexandria by that time

Table 4: An example of the grouping effect. The incorrect form of the verb to be begins a group
of incorrect words in the hypothesis, but these words agree in their morphological inflection.

the feminine form of the verb. When the acoustic model prefers a word with an incorrect inflection,
the language model effectively propagates the error to later words. A language model based on
word-forms prefers sequences observed in the limited training data, which will implicitly force an
agreement with the inflections of preceding words, making it difficult to stop propagating errors.
Morphological cues can correct for such errors and improve recognition of inflected languages in
general.

The approach based on log-linear model differs from previous work such as [19] and [4]. By
choosing a discriminative framework and maximum entropy based estimation, the model allows
arbitrary features or constraints and their combinations without the need for explicit elaboration
of the space and its backoff architecture. Thus, morphological features can be incorporated in the
absence of knowledge about their inter-dependencies.

4.1 Inflectional Morphology

Inflectional abundance in a language generally corresponds to some flexibility in word order. In
a free word-order language, the order of sentential participants is relatively unconstrained. This
does not mean a speaker of the language can arbitrarily choose an order. Word-order choice may
change the semantic and/or pragmatic interpretation of an utterance. Czech is known as a free
word-order language allowing for subject, object, and verbal components to come in any order.
Morphological inflection in these languages must include a syntactic case marker to allow the
determination of which participants are subjects (nominative case), objects (accusative or dative)
and other such entities. Additionally, morphological inflection encodes features such as gender and
number. The agreement of these features between sentential components (adjectives with nouns,
subjects with verbs, etc.) may further disambiguate the target of a modifier (e.g., identifying the
noun that is modified by a particular adjective).

The increased flexibility in word order aggravates the data sparsity of standard n-gram lan-
guage model for two reasons: first, the number of valid configurations of a group of words increases
with the free order; and second, lexical items are decorated with the inflectional morphemes, mul-
tiplying the number of word-forms that appear.

In addition to modeling sequences of word-forms, the model incorporates sequences of mor-
phologically reduced lemmas, sequence of morphological tags and sequences of various factored
representations of the morphological tags, factored tags. Factoring a word into the semantics-
bearing lemma and syntax-bearing morphological tag alleviates the data sparsity problem to some
extent. However, the number of possible factorizations of n-grams is large. The approach adopted
in this work is to provide a rich class of features and defer the modeling of their interaction to the
learning procedure.
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4. Discriminative Log-Linear Models 13

4.2 Extracting Morphological Features

The extraction of reliable morphological features critically effects further morphological modeling.
The first step in the process is to select the most likely morphological analysis for each word using
a morphological tagger. This is performed with the Czech feature-based tagger distributed with
the Prague Dependency Treebank [6]. The tagger is based on a morphological analyzer which
uses a lexicon and a rule-based tag guesser for words not found in the lexicon. Trained by the
maximum entropy procedure, the tagger uses left and right contextual features from the input
string. Currently, this is the best available Czech-language tagger. See [7] for further details on
the tagger.

Label Description # Values
lemma Reduced lexeme < |vocab|
POS Coarse part-of-speech 12
D-POS Detailed part-of-speech 65
gen Grammatical Gender 10
num Grammatical Number 5
case Grammatical Case 8

Table 5: Czech morphological features used in the current work. The # Values field indicates the
size of the closed set of possible values. Not all values are used in the annotated data.

From the morphological features assigned by the tagger, only a subset is retained and the less
reliable features, which are semantic in nature, are discarded. The basic morphological features
used are detailed in Table 5. In the tag-based model, a string of 5 characters representing the 5
morphological fields is used as a unique identifier. The derived features include n-grams of POS,
D-POS, gender (gen), number (num), and case features as well as their combinations.

POS, D-POS Captures the sub-categorization of the part-of-speech tags.

gen, num Captures complex gender-number agreement features.

num, case Captures number agreement between specific case markers.

POS, case Captures associated POS/Case features (e.g., adjectives associated with nominative
elements).

The paired features allow for complex inflectional interactions and are less sparse than the
composite 5-component morphological tags. Additionally, the morphologically reduced lemma
and n-grams of lemmas are used as features in the models.

Word-form to obdob́ı bylo poměrné krátké
gloss that period was relatively short
lemma ten obdob́ı být poměrně krátký
tag PDNS1 NNNS1 VpNS- Dg— AAFS2

Table 6: A morphological analysis of Czech. This analyses was generated by the Hajič tagger.
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14 Models for Czech ASR

Table 6 presents a morphological analysis of the Czech sentence To obdob́ı bylo poměrně krátké.
The encoded tags represent the first 5 fields of the Prague Dependency Treebank morphological
encoding and correspond to the last 5 rows of Table 5. Features for this sentence include the
word-form, lemma, and composite tag features as well as the components of each tag and the
above mentioned concatenation of tag fields. Additionally, n-grams of each of these features are
included. Bigram features extracted from an example sentence are illustrated in Table 7.

form to obdob́ı bylo poměrné krátké
to obdob́ı obdob́ı bylo bylo poměrné poměrné krátké

lemma ten obdob́ı být poměrně krátký
ten obdob́ı obdob́ı být být poměrně poměrně krátký

tag PDNS1 NNNS1 VpNS- Dg— AAFS2
PDNS1 NNNS1 NNNS1 VpNS- VpNS- Dg— Dg— AAFS2

POS P N V D A
P N N V V D D A

. . . . . .
case 1 1 - - 2

1 1 1 - - 0 - 2
num/case S1 S1 S- – S2

S1 S1 S1 S- S- – – S2
. . . . . .

Table 7: Examples of the n-grams extracted from the Czech sentence To obdob́ı bylo poměrně
krátké. A subset of the feature classes is presented here. The morphological feature values are
those assigned by the Hajič tagger.

The following section describes how the features extracted above are modeled in a discrimina-
tive framework to reduce word error rate.

4.3 Corrective Model and Estimation

For incorporating morphological features, a log-linear model is adopted which is similar in form
to the re-ranking framework of Charniak and Johnson [3]. The model scores each test hypothesis
y using a linear function, vθ(y), of features extracted from the hypothesis fj(y) and model pa-
rameters θj , i.e., vθ(y) =

∑
j θjfj(y). The hypothesis with the highest score is then chosen as the

output.
The model parameters, θ, are learned from a training set by maximum entropy estimation of

the following conditional model:∏
s

∑
yi∈Ys:g(yi)=maxjg(yj)

Pθ(yi|Ys)

Here, Ys = {yj} is the set of hypotheses for each training utterance s and the function g returns
an extrinsic evaluation score, which in our case is the WER of the hypothesis. Pθ(yi|Ys) is
modeled by a maximum entropy distribution of the form, Pθ(yi|Ys) = exp vθ(yi)/

∑
j exp vθ(yj).

This choice simplifies the numerical estimation procedure since the gradient of the log-likelihood
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4. Discriminative Log-Linear Models 15

with respect to a parameter, say θj , reduces to difference in expected counts of the associated
feature, Eθ[fj |Ys] − Eθ[fj |yi ∈ Ys : g(yi) = maxjg(yj)]. To allow good generalization properties,
a Gaussian regularization term is also included in the cost function.

A set of hypotheses Ys is generated for each training utterance using a baseline ASR system
and a jack-knife procedure, as in section 3.

The model allows the exploration of a large feature space, including n-grams of words, mor-
phological tags, and factored tags. In a large vocabulary system, this could be an enormous
space. However, in a discriminative maximum entropy framework, only the observed features
are considered. Among the observed features, those associated with words that are correct in all
hypotheses do not provide any additional discrimination capability. Mathematically, the gradient
of the log-likelihood with respect to the parameters of these features tends to zero and they may
be discarded. Additionally, the parameters associated with features that are rarely observed in
the training set are difficult to learn reliably and may be discarded.

To avoid redundant features, attention was focused on words which are frequently incorrect;
this is the error region to be modeled. In the training utterance, the error regions of a hypothesis
are identified using the alignment corresponding to the minimum edit distance from the reference,
akin to computing word error rate. To mark all the error regions in an ASR lattice, the minimum
edit distance alignment is obtained using equivalent finite state machine operations [9]. From
amongst all the error regions in the training lattices, the most frequent 12k words in error are
shortlisted. Features are computed in the corrective model only if they involve words for the
shortlist. The parameters, θ, are estimated by numerical optimization as in [3].

4.4 Empirical Evaluation

The model was empirically evaluated on MALACH corpus. A portion of the training data con-
taining speech from 44 speakers, about 21k words in all is treated as development set (dev). The
test set (eval) consists of about 2 hours of speech from 10 new speakers and contains about 15k
words.

A set of contrastive experiments was carried out to gauge the performance of the corrective
models and the contribution of morphological features. For training the corrective models, 50 best
hypotheses are generated for each utterance using the jack-knife procedure mentioned earlier.
For each hypothesis, bigram and unigram features are computed which consist of word-forms,
lemmas, morphologoical tags, factored morphological tags, and the likelihood from the baseline
ASR system. For testing, the baseline ASR system is used to generate 1000 best hypotheses
for each utterance. These are then evaluated using the corrective models and the best scored
hypothesis is chosen as the output.

Table 8 summarizes the results on two test sets – the dev and the eval set. A corrective model
with word bigram features improve the word error rate by about an absolute 1% over the baseline.
Morphological features provide a further gain on both the test sets consistently.

The gains on the dev set are significant at the level of p < 0.001 for three standard NIST tests,
namely, matched pair sentence segment, signed pair comparison, and Wilcoxon signed rank tests.
For the smaller eval set the significant levels were lower for morphological features. The relative
gains observed are consistent over a variety of conditions that we have tested including the ones
reported below.
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16 Models for Czech ASR

Features Dev Eval
Baseline 29.9 35.9
Word bigram 29.0 34.8
+ Morph bigram 28.7 34.4

Table 8: The word error rate of the corrective model is compared with that of the baseline ASR
system, illustrating the improvement in performance with morphological features.

4.5 Analysis of Features

Given the improvements, two questions arise naturally. Can the number of features be reduced
significantly and still retain most of the gains? Which features contribute most to the performance
gain? Experiments with simple feature reduction using χ2 statistics were performed to answer the
first question and the results showed that at least 70% of the features can be removed without
hurting the performance significantly.

An exact answer to the second question requires a large number of leave-one-out experiments.
Instead, an approximate contribution was gauaged using the weights learned from the maximum
entropy model when all the features compete with each other. The impact of feature classes can
then be analyzed by zeroing the weights corresponding to all features from a particular class and
evaluating the performance of the resulting model without re-estimation. Figure 4 illustrates the
effectiveness of different features class. The y-axis shows the gain in F-score, which is monotonic
with the word error rate, on the entire development dataset. In this analysis, the likelihood score
from the baseline ASR system was omitted since the interest is in understanding the effectiveness
of categorical features such as words, lemmas and tags.

The most independently influential feature class is the factored tag features. This corresponds
with our belief that modeling morphological features requires detailed models of the morphology;
in this model the composite morphological tag n-gram features (TNG) offer little contribution in
the presence of the factored features.

The ranking of χ2 statistics reveals a similar story. When features are ranked according to
their χ2 statistics, about 57% of the factored tag n-grams occur in the top 10% while only 7% of
the word n-grams make it. The lemma and composite tag n-grams give about 6.2% and 19.2%
respectively. Once again, the factored tag is the most influential feature class.

The large feature reduction allows exploration of yet larger feature space. In addition to the
n-gram counts, the feature could potentially incorporate the component acoustic model scores.
Thus, allow corrective model to be acoustic-sensitive and this extension is being investigated
currently.

5 Conclusions

This report describes acoustic and language modeling for Czech ASR in MALACH. The techniques
developed here are equally applicable to other spoken archives, in particularly, those with rich
morphology. The report enumerates many of the technical challenges in building a large vocabulary
ASR system for a real-world spoken archive. Further, two new techniques were investigated to
correct systematic errors in ASR output and have wider applications. Each of them provided an
improvement in ASR performance by about 1-1.5% absolute gain.
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Figure 4: Analysis of features classes for a bigram form, lemma, tag, and factored tag model.
Y -axis is the contribution of this feature if added to an otherwise complete model. Feature classes
are labeled: TNG – tag n-gram, LNG – lemma n-gram, FNG – form n-gram and TFAC – factored
tag n-grams. The number following the # represents the order of the n-gram.

6 Acknowledgments

The work reported here was performed in collaboration with several colleagues. In particular,
section 4 represents joint work with Keith Hall. I thank William Byrne for sharing his technical
insight all along this project. Peter Nemec and Vaclav provided valuable suggestions from a
native speaker’s perspective on correcting common errors in ASR output, which inspired the
work in section 4. Vlasios Doumpiotis and Shankar Kumar provided baseline legacy systems for
comparison. Thanks also to Joseph Psutka and colleagues for providing the transcripts and the
Czech National Corpus, and Mehryar Mohri and colleagues for the AT&T FSM and GRM toolkits.
This work was partly supported by NSF (USA) under the Information Technology Research (ITR)
program by NSF IIS Award No. 0122466.

References

[1] L. R. Bahl and F. Jelinek. Decoding for channels with insertions, deletions, and substitutions
with applications to speech recognition. In IEEE Trans. Info. Theory, volume 21(4), pages
404–411, 1975.

[2] W. Byrne, D. Doermann, M. Franz, S. Gustman, J. Hajic, D. Oard, M. Picheny, J. Psutka,
B. Ramabhadran, D. Soergel, T. Ward, and W.-J. Zhu. Automatic recognition of spontaneous
speech for access to multilingual oral history archives. IEEE Transactions on Speech and
Audio Processing (Special Issue on Spontaneous Speech Processing), July 2004.

Center for Language and Speech Processing
Johns Hopkins University, Baltimore MD 21218



18 Models for Czech ASR

[3] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discrimina-
tive reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computa-
tional Linguistics, 2005.

[4] Ghinwa Choueiter, Daniel Povey, Stanley Chen, and Geoffrey Zweig. Morpheme-based lan-
guage modeling for Arabic LVCSR. In Proceedings of the 2006 IEEE International Conference
on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.

[5] V. Goel and W. Byrne. Minimum Bayes-risk automatic speech recognition. In W. Chou and
B.-H. Juang, editors, Pattern Recognition in Speech and Language Processing. CRC Press,
2003.
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