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ABSTRACT
We consider the relationship between training set size and
the parameter k for the k-Nearest Neighbors (kNN) clas-
sifier. When few examples are available, we observe that
accuracy is sensitive to k and that best k tends to increase
with training size. We explore the subsequent risk that k

tuned on partitions will be suboptimal after aggregation and
re-training. This risk is found to be most severe when little
data is available. For larger training sizes, accuracy becomes
increasingly stable with respect to k and the risk decreases.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: Miscellaneous

General Terms: Experimentation, Measurement

Keywords: text classification, k-Nearest Neighbors, pa-
rameter tuning, parameter stability

1. INTRODUCTION
Before applying text classification to real world problems,

practitioners generally carve up the available labeled data
to evaluate the system’s accuracy and to tune classification
parameters. At the same time, it is widely believed that the
most consistent way to improve performance in general is
to simply add more training data. Thus, real world systems
evaluated and tuned on partitioned data typically aggregate
all the available data and retrain before application. This
calls into question the stability of the classification parame-
ters being extrapolated onto the post-aggregation problem.

We consider the parameter k in the well known kNN clas-
sifier [2], where k is the number of training examples (neigh-
bors) used to determine a test document’s labels. kNN
is conceptually simple, scales well [3], and has performed
strongly on several well studied test corpora [1],[2].

Our aim is to understand whether the best choice of k

is dependent on the training size, where we consider the
optimal choice to be that k which produces the largest R-
precision. R-precision is a well understood metric from
the ranked retrieval community which, for the classification
problem, can be seen as a measure of the utility of a ranked
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Figure 1: (a) R-precision vs. k for several example
training set sizes; sizes are noted on curves. (b) Best
R-precision and (c) best k from Setting II trials.

list of hypothesized labels for a user. Formally, R-precision
is the average proportion of labels correctly assigned to a
document, where a document with R true labels has R la-
bels hypothesized by the classifier.

2. EXPERIMENTS
Our implementation of kNN uses symmetric Okapi term

weighting, w(tf) = tf

0.5+1.5( dl

avdl
)+tf

, where w(tf) is the com-

puted term weight, tf is the term frequency of a word in a
document, dl is the length of the document the term ap-
pears in, and avdl is the average document length. Term
weights are multiplied by their inverse document frequency,

idf(t) = log
“

N−df(t)+0.5
df(t)+0.5

”

, where df(t) is the document fre-

quency of term t and N is the total number of training
documents. The label scores contributed from the k nearest
neighbors are weighted by the inner product of the test and
neighbor document vectors.

Our data consists of 200K documents from the RCV1-
v2 newswire corpus [1] which we examine in two distinct
settings. Setting I considers 500 trials at each of the fixed
sizes: 100, 500, 1K, 10K, 50K training documents randomly
sampled. This narrow view allows us to examine variance
in best k. In Setting II, for each of 1500 trials, we sample D

training documents, where D is a random variable uniformly
distributed between 1 and 100K. This broad view hopes to
reveal trends over a range of set sizes. In both settings, 1K
disjoint testing documents are sampled per trial.

For each trial, we search for the optimal k: beginning at
k = 1, we increment k by one until fifteen consecutive incre-
mentings have failed to improve upon the best R-precision
yet seen. This approach requires the R-precision vs. k curve
to be somewhat smooth, which we experimentally validated
and illustrate in Figure 1a. R-precision tends to monoton-
ically increase, peak, and then decrease as k increases—a
trend exhibited regardless of the training set size. Our re-
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Figure 2: Setting I trials. Top and side boxplots
show R-precision and k for each training size. Box-
plot notches show 95% CIs for the mean.

quirement that fifteen consecutive increments of k fail to im-
prove the R-precision additionally mitigates the risk that a
particular curve will peak in R-precision a second time. We
also observe from Figure 1a that curves become increasingly
flat as set size increases; that is, for larger training sets, the
risk of poorly choosing k decreases. Figure 1b plots the peak
R-precision obtained for each Setting II trial vs. training set
size. Observe that, after roughly 1K training documents,
increasing R-precision by 10% requires the training set be
enlarged by a factor of nearly 100. The need for so much
data to improve R-precision motivates the common practice
of aggregating all available data and retraining before the
classifier is applied. R-precision increases faster below 1K
training documents. At the same time, with fewer docu-
ments, the risk of poorly choosing k is increased.

Figure 2 plots best k vs. R-precision for each of the Set-
ting I trials. Trials with equal amounts of training data form
clusters, and, unsurprisingly, the average best R-precision
improves (with statistical significance) for each increase in
training set size. Note that the mean optimal k, as well
as the variance in optimal k, also increases at each step
from 100 to 10K training documents, before dipping again
at 50K. Suppose only 1K labeled documents were available
for an evaluation. Figure 2 roughly tells us that if we parti-
tion those 1K documents into two equally sized training and
testing pools, search for an optimal k using the 500 training
documents, and then aggregate all 1K documents for a real
problem using that same k, this k will typically be much
smaller than the true optimal k for the aggregated training
set. And as we saw in Figure 1a, small deviations from opti-
mal k can result in large deviations from best R-precision on
small training set problems. Unfortunately, this deficiency
will go undetected as, in such a case, we would have no
labeled data left for further evaluation.

We suspect the optimal k at first increases because, for
very little training data, a large k means a large propor-

tion of training documents will be used for labeling (i.e., the
smoothing will be very aggressive); accordingly, the best k

(and the variance in best k) must be small. As the training
set size increases initially, this small data problem is relaxed,
and the best k tends to increase, dependent on some other
property of the training data (e.g., perhaps the separabil-
ity of documents having distinct labels). Variance in best k

likely also increases because, as seen in Figure 1a, as train-
ing sizes increase, near peak R-precision is sustained over
a broader range of k. On the other hand, if our training
space were to be densely populated by example documents,
we might expect the optimal k to be roughly k = 1. That is,
if each test document had an identical document in train-
ing, that one nearest document in the training space would
presumably have the appropriate labels attached to it (in-
consistencies in human judgments might increase this limit-
ing k slightly). However, because the number of documents
needed to densely fill the space grows exponentially in the
number of features (i.e., dimensions) and because we would
expect the document space to be “semantically anisotropic”
(i.e., more “meaning distance” is traversed along some di-
mensions than others), this theoretical behavior of best k

will never be observed in real, high-dimensional, problems.
To determine the extent to which k may continue to de-

pend on training set size for larger set sizes, we considered
trials from Setting II, in which up to 100K training docu-
ments per trial were investigated. As before, we found that
best k increases with training size for smaller set sizes. For
larger set sizes, however, k and training set size appear to be
completely uncorrelated. It is therefore unclear whether ag-
gregating large amounts of training and testing data poses
a risk due to the instability of best k (it is possible that
the pre-aggregation training data will sufficiently effect the
aggregated statistics so as to prevent the optimal k from
drifting far). Future work could include experimental trials
of this scenario. At the least, it is clear that best k could
only remain fixed through aggregation if the yet unknown
properties which determine best k themselves remain mostly
unchanged. This suggests future work might explore the ef-
fects of partitioning strategies on parameter stability.

3. CONCLUSION
We have seen that we must be cautious to assume classifi-

cation parameters tuned using a partition of available data
will be optimal after aggregation. The choice of k can sig-
nificantly depend on training size, particularly for problems
with little available data. When more training data is used,
it remains unclear what principally determines the optimal
choice of k, although we have seen this is generally of little
concern since R-precision becomes increasingly stable with
respect to k as training sizes increase.
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