
Lattice Segmentation and Minimum Bayes

Risk Discriminative Training for Large

Vocabulary Continuous Speech Recognition

Vlasios Doumpiotis

Escription Incorporated
Needham, MA 02494 U.S.A.

William Byrne ∗

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, U.K.

Abstract

Lattice segmentation techniques developed for Minimum Bayes Risk decoding in
large vocabulary speech recognition tasks are used to compute the statistics needed
for discriminative training algorithms that estimate HMM parameters so as to re-
duce the overall risk over the training data. New estimation procedures are de-
veloped and evaluated for both small and large vocabulary recognition tasks, and
additive performance improvements are shown relative to maximum mutual infor-
mation estimation. These relative gains are explained through a detailed analysis
of individual word recognition errors.
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1 Introduction

Discriminative acoustic modeling procedures, such as maximum mutual infor-
mation (MMI) estimation (Normandin (1996)), are powerful modeling tech-
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niques that can be used to improve the performance of speech recognition sys-
tems that are created initially using Maximum Likelihood Estimation (MLE)
algorithms. MMI is often motivated as an estimation procedure by observing
that it increases the a posteriori probability of the correct transcription of
the speech in the training set. This defines MMI as a parameter estimation
procedure, but the overall value of incorporating MMI in system building is
the reduction of words recognized incorrectly on an unseen test set.

Since the ultimate goal is to reduce the number of words in error, which we will
define as the loss, estimation procedures that reduce loss rather than improve
likelihood offer a modeling approach to improve systems under a criterion that
is closely linked to overall ASR performance. One such risk-based parameter
estimation procedure was developed by Kaiser et al. (2000, 2002) to reduce the
expected loss, or risk, over the training set. Their approach is a generalization
of MMI in that both are derived via the Extended Baum Welch algorithm
(Gopalakrishnan et al. (1991)), and MMI is special case of risk minimization
under the sentence error loss function.

The risk-based estimation algorithm of Kaiser et al. (2000, 2002) is not suited
for direct application to large vocabulary speech recognition tasks. The diffi-
culty arises from the need to compute the risk over many alternative hypothe-
ses to obtain reliable statistical estimates. In small vocabulary tasks, N-Best
lists are adequate to represent the space of hypotheses. However word lat-
tices are needed in large vocabulary tasks. While lattice algorithms have been
developed to compute the statistics needed for likelihood-based estimation
procedures such as MMI (Woodland and Povey (2000)), risk-based estimation
algorithms are not as easily formulated over lattices. The problem is that loss
and likelihood are not computed in the same way. The lattice structures that
make likelihood calculation easy and efficient do not help with the computa-
tion of risk.

The focus of this paper is the efficient computation of loss and likelihood in
risk-based parameter estimation for large vocabulary speech recognition. We
use lattice-cutting techniques developed for Minimum Bayes Risk decoding
(Goel et al. (2001); Kumar and Byrne (2002); Goel et al. (2004)) to compute
efficiently the statistics needed by the algorithm of Kaiser et al. (2000, 2002).
We will show that the two techniques can be merged through a proper def-
inition of the estimation problem to yield efficient and effective estimation
procedures that can be used to obtain additive performance improvements
over MMI for large vocabulary speech recognition.
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1.1 Overview

The paper proceeds as follows. In Section 2 we discuss the relationships be-
tween prior work in minimum Bayes risk (MBR) decoding and in discrimina-
tive parameter estimation. As will be described, the efficacy of MBR decoding
for large vocabulary speech recognition depends on the efficient computation
of risk over large ASR lattices, and we suggest how risk-based lattice segmenta-
tion, developed for efficient MBR decoding, can be used to compute the statis-
tics needed in MBR parameter estimation. In Section 3 we present Pinched
Lattice Minimum Bayes Risk Discriminative Training procedures based on
risk-based lattice segmentation. The general PLMBRT algorithm is presented
first in Section 3, after which two PLMBRDT variants are presented in Sec-
tions 3.1 and 3.2: the first is intended for use with whole-word acoustic mod-
els and the second incorporates very aggressive lattice pruning. In Sections 4
and 5 we compare PLMBRDT variants to MMI: in Section 4 we study small
vocabulary ASR recognition behavior and show that PLMBRDT can resolve
errors in ways that the standard MMI does not, and in Section 5 we further
show that PLMBRDT can be used to improve MMI acoustic models for large
vocabulary ASR tasks.

2 Minimum Bayes Risk Discriminative Training

Risk-based parameter estimation procedures attempt to minimize the ex-
pected risk over the training set. Given a transcribed database {W̄ ,O}, the
estimation objective is to find the optimum model parameters that minimize
the expected risk

θ∗ = argmin
θ

R(W̄ ,W ; θ) (1)

where

R(W̄ ,W ; θ) =
∑

W ′∈W
l(W̄ , W ′)P (W ′|O; θ) . (2)

W is taken to be a set of hypotheses being considered as alternatives to the
truth W̄ , and we assume that their distance to the correct transcription W̄ is
measured by the string edit or Levenstein distance l(W̄ , W ) associated with
the Word Error Rate (WER).

The estimation problem hinges on determining the contribution to the overall
risk of each hypothesis W ′ in W . If a relatively likely hypothesis W ′ differs
significantly from W̄ as measured by l(W̄ , W ′), it will add substantially to the
overall risk. Thus a successful estimation strategy is one that moves probability
mass towards those hypotheses that are close to the reference while reducing
the likelihood of those hypotheses that are far away. While the loss function
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l(W̄ , W ′) and the likelihood P (W ′|O; θ) dominate the overall risk, W also
plays an important role. Since the risk is measured over W , it must provide a
representative sample of hypotheses that are both likely and error-full. If W
is not chosen well, the risk measurements will be biased. In particular there is
a danger in having W too small and underestimating the risk.

2.1 Iterative Risk Minimization via the Extended Baum Welch Algorithm

Kaiser et al. (2000, 2002) have shown how the Extended Baum Welch (Gopalakr-
ishnan et al. (1991)) algorithm can be applied to obtain a risk-minimizing vari-
ant of the MMI re-estimation procedure for the parameters of state-dependent
Gaussian observation distributions. The well-known MMI estimation equa-
tions for the means and variances of HMM Gaussian observation distributions
are (Normandin (1996))

µ̄s =

∑
τ γ′s(τ ; θ)o(τ) + Dsµs∑

τ γ′s(τ ; θ) + Ds

(3)

Σ̄s =

∑
τ γ′s(τ ; θ)o(τ)2 + Ds (Σs + µs

2)∑
τ γ′s(τ ; θ) + Ds

− µ̄2
s (4)

where γ′s(τ ; θ) = γs(τ ; θ)− γg
s (τ ; θ) ; γs(τ ; θ) = qsτ (s|w̄K−1

0 , ol̂
1; θ) is the condi-

tional occupancy probability of state s at time τ given the training acoustic
observation vector sequence ol̂

0 and the reference W̄ = w̄K−1
0 ; and γg

s (τ ; θ) =

qsτ (s|ol̂
1; θ) is the conditional occupancy probability of state s at time τ given

only the training acoustic data. Taken together, the parameters of the state
observation distribution are θ = {µs, Σs}.

The effect of MMI is that the new parameters improve the posterior distri-
bution of the reference transcription: P (W̄ |O; θ̄) ≥ P (W̄ |O; θ). By observing
that the overall risk R(W̄ ,W ; θ) is a rational function similar to the posterior
probability P (W |O), Kaiser et al. (2000, 2002) derived the following MMI-
variant to reduce the overall risk, i.e. so that R(W̄ ,W ; θ̄) ≤ R(W̄ ,W ; θ) :

µ̄s =

∑
W ′∈W

K(W ′,W ; θ)
∑

τ γs(τ ; W ′)o(τ) + Dsµs∑
W ′∈W

K(W ′,W ; θ)
∑

τ γs(τ ; W ′) + Ds

(5)

Σ̄s =

∑
W ′∈W

K(W ′,W ; θ)
∑

τ γs(τ ; W ′)o(τ)2 + Ds

(
Σs + µsµs

T
)

∑
W ′∈W

K(W ′,W ; θ)
∑

τ γs(τ ; W ′) + Ds

− µ̄sµ̄
T
s (6)

where

K(W ′,W ; θ) = [
∑

W ′′∈W
P (W ′′|O; θ)l(W̄ , W ′′)− l(W̄ , W ′)] P (W ′|O; θ) . (7)
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The quantity K(W ′,W ; θ) determines the contribution of each hypothesis W ′

to the gradient of the loss. It plays the same role in the Extended Baum Welch
update rule as the gradient of the likelihood does in the derivation of MMI:

−∇θR(W̄ ,W ; θ) =
∑

W ′∈W
K(W ′,W ; θ)∇θ log P (O|W ′; θ) . (8)

Note that all the quantities in the above update relationships depend on the
set of competing hypotheses W . K(W ′,W ; θ) clearly depends on W , as does
the posterior distribution over the competing hypotheses:

P (W ′|O) =
P (O|W ′)P (W ′)∑

W ′′∈W
P (O|W ′′)P (W ′′)

. (9)

We refer to W as the evidence space since it specifies the hypotheses over
which the risk will be estimated.

2.2 Computing Statistics Over the Evidence Space

In large vocabulary speech recognition tasks, W is often a lattice generated
by the ASR decoder (Woodland and Povey (2000)). Lattices are used because
the most likely hypotheses are so numerous that listing them explicitly is
impractical. Through the conditional independence assumptions underlying
the ASR system, quantities such as Equation (9) can be found by summing
over the lattice arcs so that estimation procedures such as lattice-based MMI
are feasible. Dense lattices are needed to obtain robust and unbiased estimates
of the quantities needed in Equations 3 and 4.

However the risk minimizing estimation procedure of Equations 5, 6, and 7
is not readily realized over lattices. The source of the problem is the pres-
ence of the term l(W̄ , W ′) in the quantity K(W ′,W ; θ); this term must be
found for all W ′ ∈ W . If l(W̄ , W ′) was a likelihood based quantity, it could be
easily computed over the ASR lattice. However, a separate trellis must be con-
structed for the dynamic programming (DP) alignment of each string W ′ to W̄
(Sankoff and Kruskal (1983)). This trellis is not consistent with the structure
of ASR lattices; the latter reflect the conditional independence assumptions
underlying the ASR models and not the requirements of the DP alignment. As
a result, the quantity K(W ′,W ; θ) must be computed and maintained for each
path W ′ ∈ W . Beyond the computational difficulties in finding the distances
for all these W ′, there are complications in the computation of the mean and
variance updates of Equations 5 and 6. The summation over W must be per-
formed path-wise by explicitly enumerating all the hypotheses W ′ so that the
terms K(W ′,W ; θ) can be incorporated correctly into the statistics.
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Given the formulation thus far, the only possibility for lattice-based estimation
is simply to expand the lattices into N-Best lists so that the string-to-string
comparisons and the gathering of statistics (done via the Forward-Backward
procedure over each W ′ ∈ W) can be carried out exactly. This is the ap-
proach proposed, investigated, and validated by Kaiser et al. (2000, 2002).
It is effective for tasks for which N-Best lists can be created that contain a
significant portion of the likely hypotheses. While correct, this approach is
not feasible for large vocabulary continuous speech recognition tasks in which
these N-Best lists would have to be extremely deep to contain the most likely
hypotheses. As the depth of the N-Best lists increases, performing the Leven-
shtein alignments in order to compute the loss l(W̄ , W ′) for all paths W ′ ∈ W
becomes overwhelmingly expensive, as does the gathering of statistics needed
to perform the parameter updates of Equations 5 and 6.

This problem of merging the computation of loss and likelihood also arises
in the application of Minimum Bayes Risk decoding to large vocabulary ASR
tasks (Goel et al. (2001); Kumar and Byrne (2002)). We next discuss how
efficient techniques to compute risk over lattices can be used to obtain the
statistics needed to implement the risk-based MMI variants for parameter
estimation in large vocabulary speech recognition tasks.

2.2.1 Efficient Computation of Risk in MBR Decoding

Minimum Bayes Risk decoders (Goel et al. (2001); Kumar and Byrne (2002))
find a sentence hypothesis with the least expected error under a loss function
as

Ŵ = argmin
W∈W

∑
W ′∈W

l(W, W ′)P (W ′|O; θ) (10)

This is essentially a large search problem in which W are N-Best lists or
lattices that incorporate P (W ′|O) as a posterior distribution on word strings,
typically obtained using an HMM acoustic model and an N-gram language
model (Stolcke et al. (1997); Goel and Byrne (2000)).

In implementing an MBR decoder, there are conceptually two distinct steps
(which can be combined for efficiency (Goel and Byrne (2000)):
Step 1 For each W ∈ W , find its risk :

R(W, W ; θ) =
∑

W ′∈W
l(W, W ′) P (W ′|O; θ) (11)

Step 2 Select the minimum risk hypothesis :

Ŵ = argmin
W∈W

R(W, W ; θ) . (12)

Efficient algorithms have been developed to compute the risk R(W, W ; θ)
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of a hypothesis W under the Levenshtein loss function (Goel et al. (2004)).
Since it is straightforward to compute P (W ′|O; θ) over lattices, the key is an
efficient lattice-to-string alignment algorithm to find l(W, W ′) for all W ′ in any
lattice W . Such an algorithm has been developed, and it yields the (nearly)
optimum alignment of every W ′ to W̄ .

The lattice-to-string alignment algorithm is described in detail in Goel et al.
(2004). For the purposes of this paper the algorithm can be summarized picto-
rially. The top lattice in Figure 1 shows a lattice generated by an ASR system.
The lattice arcs are labelled by word hypotheses and these arcs carry the neg-
ative log likelihood of each word. In this example, the lattice will be aligned
to the reference string W̄ : HELLO HOW ARE YOU ALL TODAY; it appears
in the lattice marked in bold. The output of the lattice-to-string alignment
algorithm is a lattice itself, as shown in the second lattice of Figure 1. The
alignment of an arbitrary string from the first lattice, e.g.
W ′ : WELL O NOW ARE YOU ALL TODAY

can be read from the corresponding string in the alignment lattice:
WELL.INS:0/1 O:0/1 NOW:1/1 ARE:2/0 YOU:3/0 ALL:4/0 TODAY:5/0

The notation WELL.INS:0/1 indicates that WELL is aligned as an insertion,
with a cost of 1, to the word at position 0 in the reference string (which is
HELLO - the alignment index starts at 0). Similarly, O is also aligned to
HELLO and NOW is aligned to HOW, each with a substitution cost of 1. The
overall alignment between the lattice path and the reference is

Index i: 0 1 2 3 4 5

Reference W̄i : HELLO HOW ARE YOU ALL TODAY

W ′
i : WELL O NOW ARE YOU ALL TODAY

Per Segment Cost : 2 1 0 0 0 0

with a total loss of l(W̄ , W ′) =
∑

i l(W̄i, W
′
i ) = 3. By tracing a path through

the lattice and accumulating the Levenshtein alignment costs and weighting
them by the arc likelihoods (which are preserved from the original ASR output
lattice), the risk R(W̄ ,W ; θ) of W̄ can be computed.

The connection between MBR decoding and the Minimum Risk estimation
algorithm of Equations 5 and 6 becomes apparent when we note that a key
quantity in the risk-based estimation procedure can be written in terms of the
same lattice-based risk R(W̄ ,W ; θ) needed for MBR decoding :

K(W ′,W ; θ) = [R(W̄ ,W ; θ)− l(W̄ , W ′)]P (W ′|O; θ) . (13)
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Fig. 1. Alignment of lattice to the reference string and the pinching and pruning
operations that produce a lattice with confusion pairs. From top: original lattice
with reference path in bold; aligned lattice with node cut sets; pinched lattice; a
blown up segment of the pinched lattice spanning node cut sets N3 to N6; the final
pinched and pruned lattice.

2.2.2 Risk-Based Pruning of the Evidence Space

Even with the aid of the lattice-to-string alignment algorithm, computing
lattice-based risk can be computationally challenging for long or deep lat-
tices. We have developed risk-based lattice segmentation techniques to sim-
plify MBR decoding and we now discuss how these methods can be applied
to risk-based parameter estimation.
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Risk-based lattice segmentation proceeds by segmenting the lattice with re-
spect to the reference string by following the lattice-to-string alignments. For
the K words of the reference string W̄ , we identify K-1 node cut sets. To form
the cut set Ni , i = 1, . . . , K − 1
- identify all lattice subpaths that are aligned to the reference word W̄i−1

- the cut set Ni consists of the final lattice nodes of all these subpaths
The second panel of Figure 1 shows the cut sets for that lattice. The paths
between adjacent cut sets are tied at their ends so that they form sublat-
tices, and these are then concatenated to form a pinched lattice as shown
in the third panel of Figure 1 (and the second panel of Figure 2). Each of
these sublattices contains one word from the reference string and the other
word sequences which aligned to it. An expanded subsection of the pinched
lattice from the cut sets N3 to N6 is given in the fourth panel of Figure 1.
The dashed arcs show the likelihood of the word hypotheses. For instance,
− log P (W5 = ALL, O) = 2.16 + 0.7 + 1.196, is the log likelihood of all the
paths whose fifth word is ALL.

The pinched lattice is a sequence of sublattices each of which is aligned to a
single word in the reference string. These sublattices are called confusion sets
because they contain likely and errorful hypothesis segments that the ASR
system might confuse with the reference words. It is important to stress that
all the sentence hypotheses from the original ASR lattice are preserved in
creating the pinched lattice and that no paths are removed by pinching. In
fact, pinching may actually introduce new paths by piecing together subpaths
from the original lattice; however these new paths are insignificant from a
modeling point of view, in that they should be of lower probability than any
of the original lattice paths.

The evidence space is pruned in two steps. In the first step, the likelihood
of each lattice arc is used to discard all paths through every confusion set so
that only the most likely alternative to the reference word remains. This is
illustrated in the transition from the second to the third panel of Figure 2.
When the confusion sets are pruned to contain binary alternatives, we call
them confusion pairs. In the second pruning step, we simply count all the
confusion pairs in the training set lattices, and if any pair has occurred fewer
times than a set threshold, that pair is everywhere pruned back to the reference
transcription. As an example, the bottom panel of Figure 1 shows that the
confusion pair (WELL O, HELLO) is pruned back to HELLO; similarly, the
bottom panel of Figure 2 shows that 4 is removed as an alternative to OH.

The result is a greatly reduced evidence space W̃ derived from the original
lattice W . The reduction is controlled by the occurrence threshold, and we
usually determine through experimentation what value gives a reasonable sized
N-Best expansion of W̃ . For example, the 3 binary confusion pairs appearing
in the example of Figure 1 give an N-Best list of depth 23, and the depth can

Preprint submitted to Speech Communication 9



be varied by the number of hypotheses pruned away.

2.2.3 Induced Loss Functions

Our original motivation to refine the evidence space was to speed up MBR
search. However lattice pinching also allows us to redefine the string-to-string
loss within W . Suppose the reference string W̄ has K words W̄0 . . . W̄K−1.
After pinching, a string W ′ ∈ W̃ is not allowed to be aligned completely
freely to W̄ ; its alignment must follow the constraints of W̃ . We refer to the
corresponding loss as the induced loss function:

lI(W̄ , W ′) =
K−1∑
i=0

l(W̄i, W
′
i ) (14)

where W ′
i is the portion of W ′ that is aligned to W̄i. If the initial lattice-

to-string alignment was good, lI(W̄ , W ′) will be a good approximation to
l(W̄ , W ′).

3 Pinched Lattice Minimum Bayes Risk Discriminative Training

The induced loss function and the pinched and pruned evidence space pro-
duced by lattice segmentation can be used to reduce the computational cost of
minimum Bayes risk discriminative training in large vocabulary speech recog-
nition. By approximating the original lattice W by the pinched lattice W̃ and
by using the induced loss function Equation 14 in place of the Levenstein
distance, the initial training objective of Equation 2 becomes

θ∗ ' argmin
θ

∑
W ′∈W̃

lI(W̄ , W ′)P (W ′|O; θ) . (15)

Estimation is via Equations (5) and (6) with W replaced by W̃ , and taking
K(W ′, W̃) as

K(W ′, W̃ ; θ) = [
∑

W ′′∈W̃

P (W ′′|O; θ)lI(W̄ , W ′′)− lI(W̄ , W ′)] P (W ′|O; θ) . (16)

Given the induced loss function, this last quantity can be written as

K(W ′, W̃ ; θ) = [RI(W̄ , W̃ ; θ)− lI(W̄ , W ′)]P (W ′|O; θ) ∀ W ′ ∈ W̃ (17)
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where RI(W̄ , W̃ ; θ) =
∑

W ′′∈W̃
P (W ′′|O; θ)lI(W̄ , W ′′) is the expected induced

loss. This leads to the following training algorithm.

Pinched Lattice Minimum Bayes Risk Discriminative Training:
The PLMBRDT Algorithm
Step 1 Generate lattices over the training set
Step 2 Align the training set lattices to the reference transcriptions
Step 3 Segment the lattices
Step 4 Prune the confusion sets to confusion pairs
Step 5 Discard infrequently occurring confusion pairs
Step 6 Expand each pinched lattice into an N-Best list, keeping lI(W̄ , W ′)
Step 7 Compute RI(W̄ ; W̃) as defined above
Step 8 For each W ′ ∈ W̃ , compute K(W ′, W̃ ; θ) by Equation 17
Step 9 Perform a Forward-Backward pass for each W ′ ∈ W̃
Step 10 Perform reestimation via Equations 5 and 6, replacing W by W̃

This implementation does expand lattices into N-Best lists of sentence hy-
potheses. However, it is the pinched lattices that are expanded, not the orig-
inal lattices generated by the large vocabulary ASR decoder. The pinched
lattices are much reduced relative to the original lattice and, since we have
control over the degree of pinching and pruning, we can control the size of the
N-Best lists. In this way we can reduce the evidence space drastically so that
the original formulation by Kaiser et al. (2000, 2002) can be applied directly
to large vocabulary ASR, albeit under the induced loss function.

We next consider two algorithmic variants that arise from simplifications of
W̃ . The first variant is Pinched Lattice MMIE which is appropriate for small
vocabulary ASR tasks based on whole-word models. The second variant is
One-Worst Pinched Lattice MBRDT which is a form of corrective training
against a competing hypothesis extracted from the pinched lattice.

3.1 Pinched Lattice MMIE for Whole Word Acoustic Models

Lattice cutting segments the original hypothesis space into a concatenation
of K sublattices: W̃ = W̃0 · W̃2 · · · W̃K−1. In regions of low confidence, the
evidence space contains portions of the MAP hypothesis along with confusable
alternatives. In regions of high confidence, the search space is restricted to
follow the reference itself. We can express the empirical risk under the induced
loss (Equation 15) as:
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Fig. 2. Derivation of a pinched lattice for the Alphadigits task showing tagged word
labels in the confusion pairs for Pinched Lattice MMI. The pinching procedure
follows that of Figure 1. The top lattice is produced by a small-vocabulary ASR
system; the lattice path corresponding to the ML hypothesis is marked in bold. The
middle lattice shows a lattice aligned to the reference (ML) hypothesis; note that
all paths are preserved from the original (top) lattice. The bottom lattice shows a
pinched and pruned lattice containing confusion pairs with single word alternatives
to the reference hypothesis; the word labels in these sets are tagged simply by
appending the label ‘:0’.

θ∗ = argmin
θ

∑
W ′∈W̃

lI(W̄ , W ′)P (W ′|O; θ) (18)

= argmin
θ

∑
W ′

0∈W̃0

· · ·
∑

W ′
K−1∈W̃K−1

K−1∑
i=0

l(W̄i, W
′
i )P (W ′|O; θ) (19)

= argmin
θ

K−1∑
i=0

∑
W ′∈W̃i

l(W̄i, W
′)Pi(W

′|O; θ) (20)

where Pi(W
′|O; θ) is the posterior probability that W ′ is found in the ith lattice

segment.

Next we introduce the global confusion class C ⊂ {0, . . . , K − 1} to indicate
the sublattices that permit alternatives to the truth, i.e. i ∈ C implies that
Wi contains at least one segment not in the reference hypothesis; for example,
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in Figure 2, C is {3, 6, 7}. We can then write the objective as

θ∗ = argmin
θ

∑
i∈C

∑
W ′∈W̃i

l(W̄i, W
′)Pi(W

′|O, W̃ ; θ) (21)

since confusion sets that have no alternatives to the truth do not contribute to
the overall risk. Finally, we assume that we have a 0/1 loss function over the
confusion pairs and arrive at the “pinched lattice” MMI objective function

θ∗ = argmax
θ

∑
i∈C

Pi(W̄i|O, W̃ ; θ) . (22)

Therefore, under all these assumptions, the empirical risk is minimized by
maximizing the likelihood of the correct hypothesis in the confusable segments.
This can be done by a simple modification to the ‘normal’ MMI procedure that
forces it to focus on the low confidence regions identified by lattice pinching.

Pinched Lattice MMI for Whole Word HMMs:
The PLMMI Algorithm
Step 1 Generate lattices over the training set (Figure 2, top)
Step 2 Align the training set lattices to the reference transcriptions
Step 3 Segment the lattices (Figure 2, middle)
Step 4 Prune the confusion sets to confusion pairs
Step 5 Discard infrequently occurring confusion pairs
Step 6 Tag word hypotheses in confusion pairs (Figure 2, bottom). The labels
A:0 and J:0 make it possible to distinguish an A confused with a J from a
‘high confidence’ A.
Step 7 Regenerate lattices over the training set using the tagged and pinched
lattices to constrain recognition (in contrast to Step 1). If the task requires
a grammar, compose the tagged and pinched lattices with the task grammar
before lattice regeneration/rescoring. The grammar should be (trivially) ex-
tended to cover the tagged words.
Step 8 Perform lattice-based MMI (Woodland and Povey (2000)) using the
word boundary times obtained from the lattice. The procedure differs from
regular MMI in that statistics needed in Equations 3 and 4 are gathered only
over tagged word hypotheses. Statistics from the un-tagged word hypotheses,
which correspond to the high-confidence regions in the pinched lattice, are
discarded.

In PLMMI the Levenshtein distance is not used explicitly in the reestimation
procedure. It is used to create a pruned search space that contains only the
confusable pairs identified by lattice segmentation. Statistics are compiled
over these lattices as usual for lattice-based MMI, with the exception that
statistics are gathered only for those word instances that appear in confusion
sets. This is how we enforce the requirement that statistics be gathered only
over segments in the global confusion class C.
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The PLMMI technique is most appropriate for whole-word models, since it
requires reconciling word start and end times with the HMMs that model the
word. This is easily done with whole word models, but is much more difficult
with subword models in which the multiple HMMs come together to form a
single word model during decoding.

3.2 ‘One Worst’ Pinched Lattice MBRDT

The final approximation leads to a poor-man’s version of corrective training.
After lattice pinching and pruning, we select the worst sentence hypothesis
from W̃

W ∗ = argmax
W ′∈W̃

lI(W̄ , W ′) . (23)

and we redefine the evidence space to be W̃ ' {W̄ , W ∗}. This forces the
training procedure to reduce the likelihood of W ∗ relative to the truth W̄ .
Since only two hypotheses are considered, this approximation greatly simplifies
the estimation procedure. The training objective function (15) then becomes

argmin
θ

lI(W̄ , W ∗)P (W ∗|O; θ) (24)

By simple arithmetic in (17) it follows that

K(W̄ , W̃ ; θ) = [RI(W̄ , W̃ ; θ)− lI(W̄ , W̄ )]P (W̄ |O)

= lI(W̄ , W ∗) P (W̄ |O)P (W ∗|O)

K(W ∗, W̃ ; θ) = [RI(W̄ , W̃ ; θ)− lI(W̄ , W ∗)]P (W ∗|O)

= −lI(W̄ , W ∗) P (W̄ |O)P (W ∗|O)

leading to K(W̄ , W̃ ; θ) = −K(W ∗, W̃ ; θ). Note that in the above we restrict
the acoustic likelihood P (O) to the two word sequences W̄ and W ∗, so that
P (O) = P (O|W̄ )P (W̄ ) + P (O|W ∗)P (W ∗). A further approximation is to
discard the terms lI(W̄ , W ∗) P (W̄ |O)P (W ∗|O) so that the update equations
become

µ̄s =

∑
τ γs(τ ; W̄ )o(τ)−∑

τ γs(τ ; W ∗)oτ + Dsµs∑
τ γs(τ ; W̄ )−∑

τ γs(τ ; W ∗) + Ds

(25)

Σ̄s =

∑
τ γs(τ ; W̄ )o(τ)2 −∑

τ γs(τ ; W ∗)oτ
2 + Ds (Σs + µs

2)∑
τ γs(τ ; W̄ )−∑

τ γs(τ ; W ∗) + Ds

− µ̄2
s. (26)

The ‘One Worst’ Pinched Lattice MBRDT Algorithm
Step 1 Generate lattices over the training set
Step 2 Align the training set lattices to the reference transcriptions
Step 3 Segment the lattices
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Step 4 Prune the confusion sets to confusion pairs
Step 5 Discard infrequently occurring confusion pairs
Step 6 Extract the most errorful hypothesis W ∗

Step 7 Perform Forward-Backward passes with respect to W̄ and W ∗

Step 8 Perform MMI as in Equations 25 and 26

This approach is very similar to Minimum Classification Error training (Juang
and Katagiri (1992)) in that we attempt to improve the likelihood of the W̄
relative to the ‘worst’ hypothesis W ∗. What distinguishes this approach from
other forms of corrective training is not the update procedure itself, but rather
the way in which the competing hypothesis is obtained as the most errorful
sequence found by lattice pinching and pruning rather than as the best (most
likely) incorrect hypothesis.

3.3 Summary of MBRDT Algorithms

We have used the induced loss functions and pinched and pruned lattices that
can be derived from lattice segmentation to simplify the implementation of
Minimum Bayes Risk Discriminative Training for large vocabulary ASR sys-
tems. The first algorithm, PLMBRDT, is a direct application of the minimum
risk estimation procedure of Kaiser et al. (2000, 2002) under the induced loss
function. The second procedure, PLMMI, is a modified version of MMI for
whole word acoustic models that is performed over pinched lattices with bi-
nary confusion pairs. The third procedure, ‘One Worst’ PLMBRDT is a simple
form of corrective training in which the MMI-variant improves the likelihood
of the reference hypothesis relative to the worst competing candidate found
in the pinched lattice.

Both the PLMBRDT and the ‘One Worst’ Pinched Lattice MBRDT are care-
fully constructed so that they can be applied to large vocabulary ASR tasks
with sub-word acoustic models. Once the pinched and pruned evidence space
W̃ is expanded into an N-Best list of sentence hypotheses W ′, the Forward-
Backward algorithm is performed with respect to each hypothesis to generate
the statistics needed for minimum risk reestimation. In this way we do not
need to keep track of the word or subword model boundary times found in
the initial lattice generation. Applying the estimation procedure to a large
vocabulary task is as straightforward as performing Forward-Backward passes
with respect to the transcriptions in the N-Best list extracted from the pruned
evidence space and weighting the resulting statistics by the K(W ′, W̃ , ; θ) fac-
tor.
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4 Small Vocabulary ASR Performance and Analysis

Our basic estimation procedures were developed on the OGI Alphadigits (Noel
(1997)) small-vocabulary speech recognition task. The lattice cutting tech-
niques we employ attempt to identify regions of confusion and likely recogni-
tion errors. By studying a small vocabulary problem we restrict the diversity
of recognition errors so that we can analyze MBRDT performance in detail.

4.1 Baseline MMIE System Description

The baseline is a whole word HMM system built using the HTK Toolkit
(Young et al. (2000)). The Alphadigits training set consists of 46730 utter-
ances parameterized as 13 element MFCC vectors with first and second order
differences. The baseline maximum likelihood models contain 12 mixtures per
state, estimated according to the usual HTK training procedure.

The Alphadigits test set consists of 3112 utterances. Because the Alphadigits
task does not have a specific language model, recognition both for MMI lat-
tice generation and test set decoding is performed using an unweighted word
loop over the vocabulary. The AT&T Large Vocabulary Decoder (Mohri et al.
(2001)) was used to generate lattices for the training set which are then trans-
formed into word posteriors based on the lattice total acoustic score. Using
the lattices obtained by the AT&T decoder, word level posteriors were then
estimated based on the lattice total acoustic score. MMIE was then performed
at the word level using the word time boundaries taken from the lattices. The
Gaussian model means and variances are updated by equations (3) and (4).
An effective lower bound on Ds is the value which ensures that all variances
remain positive; a Gaussian specific value was used in these experiments as
suggested by Woodland and Povey (2000).

Figure 3 shows that significant improvement over the baseline can be obtained
by MMI: the initial ML performance of 10.42% WER is reduced to 8.41%
before overtraining is observed in the test set WER.

4.2 Patterns of Binary Word Errors and Confusions

As described in Sections (3, 3.1), our training procedure attempts to create
models that can resolve the recognition errors represented by the confusion
sets that result from lattice pinching. The effectiveness of our overall model-
ing approach depends on the reliability with which these confusion pairs can
be associated with ASR errors. If this can be done, there is the possibility
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Table 1
Dominant Alphadigit test set error pairs in unconstrained recognition after five
MMI iterations

Rank Error Pair A Wrongly B Wrongly Occurrences of

(A+B) Hypothesized Hypothesized Each Pair

1. F+S 35 89 124

2. V+Z 51 42 93

3. M+N 24 56 80

4. P+T 28 39 67

5. B+V 30 37 67

6. 8+H 15 32 47

7. L+OH 10 30 40

8. A+8 20 18 38

9. C+V 15 16 31

10. B+D 11 17 28

There are a total of 646 errors identified as belonging to one
of these pairs out of a total of 1571 errors.

of training discriminative models on the segmented training set lattices and
applying these models to the test data to attempt to resolve errors made by
the baseline system. We now investigate the degree to which the confusion
pairs identified by lattice pinching agree with actual word errors.

Table 1 lists the most frequent word errors (error pairs) observed after five
iterations of MMI estimation. The models are chosen after the fifth iteration
because performance is nearly optimal at that point. The analysis indicates, for
example, that there are 35 instances in which ‘S’ is hypothesized by the system,
when the true word was actually ‘F’. Similarly, there are 89 instances in which
the system produced an ‘F’ rather than an ‘S’. This simple error analysis is
found through unconstrained decoding over the test set. The error pairs are
extracted from the hypothesis-to-reference alignments under the Levenshtein
distance used to compute the recognition WER. It provides a reference against
which we can assess the viability of lattice cutting as a strategy to identify
potential errors.

We analyze the distribution of confusion pairs over the Alphadigits test set
by extracting them using an unsupervised version of the lattice cutting pro-
cedure described in Sections (2.2.1, 3.1). The process starts by identifying the
MAP path in a first-pass ASR lattice (e.g. the bold path in the top panel
of Figure 2). We obtain confusion sets by aligning lattice paths to this hy-
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Table 2
The ten most frequently observed confusion pairs found by lattice cutting in the
Alphadigits test and training sets

Test Set Training Set

Error Pair Confusion Occurrences Error Pair Confusion Occurrences

Rank Pair Rank Pair

1 F+S 699 1 F+S 15 165

4 P+T 660 4 P+T 10 728

6 8+H 650 6 8+H 10 290

3 M+N 584 3 M+N 10 146

2 V+Z 493 2 V+Z 8 038

10 B+D 344 10 B+D 5 961

7 L+OH 300 7 L+OH 5 077

5 B+V 319 5 B+V 4 939

- A+K 238 - 5+I 4 327

- 5+I 236 - J+K 3 618

pothesis, and prune them to binary confusion pairs. We performed the sanity
check of rescoring the pinched test set lattices with the MMI models used to
generate the baseline lattices. Since the pinched test set lattices contain the
MAP hypothesis we found that after rescoring performance was identical to
unconstrained decoding. This confirms that the search space reduction intro-
duces no new errors, and that the selection of the MAP hypothesis is not
influenced by pinching. However, pruning does reduce the lattice search space
substantially. As a result the Lattice Word Error Rate (LWER) (the minimal
number of insertions deletions and substitutions with respect to the reference
transcription) of the original lattices which is 1.27%, increases to 3.11% after
pinching and pruning. While this significant increase in LWER may seem at
odds with the claim that no new errors are introduced, pruning is carefully
performed so that this is the case: the baseline hypothesis is retained and
only alternative hypotheses are discarded. The increase in LWER does indeed
limit the scope for improvement relative to the baseline hypothesis, but when
rescoring the pruned lattices with the baseline acoustic models, the baseline
hypothesis should always result.

Confusion pairs are extracted from the training data in the same way, except
that the lattices are aligned to the reference transcriptions. The confusion sets
are pruned to binary confusion pairs, and the 50 most frequently occurring
pairs are kept; all other confusion pairs are pruned back to the reference word.
These are the lattices used for PLMMI.
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Fig. 3. Performance of MMI and PLMMI models in Alphadigit decoding. The MMI
system is initialized from an ML baseline of 10.42% WER. Two different initial-
ization points are chosen for the PLMMI procedure. ML+PLMMI training begins
from the ML baseline HMM (10.42% WER), and MMI+PLMMI training follows 5
MMI iterations (at 8.41% WER).

The ten most frequent training and test set confusion pairs are given in Table 2.
There is a strong agreement between the confusion pairs found in the training
and test sets. The six most frequent pairs are in agreement across both sets,
and eight of the pairs are in the top ten of both sets. Interestingly, there
appears to be a systematic bias between the ordering of confusion pairs and
the ordering of error pairs, in that the frequency of confusion pairs does not
strictly follow the error pair frequency. However, apart from the difference in
ordering, the frequent confusion pairs are also frequent error pairs, as desired.
Confusion pairs reflect the confidence the ASR system has in its hypotheses,
while error pairs reflect the accuracy of the one-best hypothesis. While these
measures are not in exact agreement, we find that confusion pairs are in fact
good indicators of the frequently occurring word errors.

4.3 Pinched Lattice MMI Performance and Within-Class Error Analysis

Models trained after five MMI iterations were used to initialize the Pinched
Lattice MMI (MMI+PL) estimation procedure. We observe in Figure 3 that
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the iterations of pinched lattice MMI estimation yield continued improvement
in WER from the best MMI performance to 8.41% to 7.63%. This is contrast
to “regular lattice” MMI, which shows evidence of overtraining beyond the
fifth iteration. This is done as a fair comparison between pinched lattice and
regular MMI, in that the systems being compared are of equal complexity
and have the same number of parameters. The improved performance can
be attributed to the use of lattice pinching in MMI estimation to refine the
evidence space of competing word hypotheses. By contrast, PLMMI initialized
from the ML baseline (ML+PLMMI) does not perform as well, and in fact
performs worse than MMI itself. One explanation for this is that PLMMI
only considers the 50 most frequent confusion pairs whereas MMI updates the
models for all words. More important, however, is the correct initialization of
these training procedures. Just as MMI works best when initialized from the
best available ML models, our experience suggests that PLMMI (and other
MBRDT training procedures) work best when initialized from well-trained
MMI models.

We can analyze the behavior of the substitution errors made in rescoring with
models trained with the MMI and pinched lattice MMI procedures. Each error
pair has two types of errors: for example, within the error pair ‘F+S’, ‘F’ can
be misrecognized as ‘S’, or ‘S’ can be misrecognized as ‘F’. Ideally, both types
of errors should decrease over each of the training iterations shown. However,
as can be seen in Figure 4(top), despite the overall reduction in WER achieved
by MMI training, error types are not reduced uniformly as training proceeds.
For example, the decrease in F→S indicates that the number of times F is
incorrectly recognized as S decreases sharply over the three MMI iterations.
While this is good in itself, the complementary value of S→F indicates that
it is gained at the cost of introducing errors in which S is wrongly recognized
as F . We find that this undesirable behavior less evident with the Pinched
Lattice MMI models (Figure 4 bottom) in which the types of errors over each
class are more balanced.

5 MBRDT for Large Vocabulary Automatic Speech Recognition

We will describe comparisons of the proposed risk-based discriminative train-
ing procedures on two large vocabulary speech recognition systems. The first
system is trained and evaluated in the SWITCHBOARD conversational En-
glish domain, and the second system is trained and evaluated in the MALACH
spontaneous Czech domain (Byrne et al. (2004)). Both systems are speaker in-
dependent continuous mixture density, tied state, cross-word, gender-independent,
triphone HMM systems trained with HTK.

The Switchboard training set speech was parameterized into 39-dimensional
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PLP cepstral coefficients with delta and acceleration coefficients (Hermansky
(1990)). Cepstral mean and variance normalization was performed over each
conversation side. There were 4000 unique triphone states with 6 Gaussian
components per state. Lattice rescoring experiments were performed using
the AT&T Large Vocabulary Decoder (Mohri and Riley (1999)), with a 33K-
word trigram language model provided by SRI (Stolcke et al. (2000)). The
baseline acoustic models used as seed models for our experiments, were built
using HTK from 16.4 hours of Switchboard-1 and 0.5 hour of Callhome English
data. This collection defined the minitrain development training set for the
2001 JHU LVCSR system (Byrne (2001)). The training set consists of 22580
utterances. The recognition tests were carried out on a subset of the 2000
Hub-5 Switchboard-1 evaluation set (SWBD1) (Martin et al. (2000)) and the
1998 Hub-5 Switchboard-2 evaluation set (SWBD2) (Martin et al. (1998)).
The total SWITCHBOARD test set was 2 hours of speech.

The MALACH Czech baseline acoustic models were built from 62 hours of data
with 24065 utterances, and the MALACH-CZ language model was a back-
off bigram with a 83K word vocabulary (Byrne et al. (2004)). The speech
was parameterized into 39-dimensional, MFCC coefficients, with delta and
acceleration coefficients. The test set consisted of 954 utterances selected from
held-out speakers and has approximately 2 hours of speech.

Lattice-based MMI was performed in each domain. MMI estimation was per-
formed at the triphone model level, with triphone time boundaries extracted
from ASR lattices generated over the training sets. The SWITCHBOARD
lattices were generated once and the lattice link posteriors were fixed for all
MMI iterations. In MALACH-CZ, the link posteriors were reestimated after
each MMI iteration.

5.1 MMIE Performance on SWITCHBOARD and MALACH-CZ

We first describe performance under MMIE training in the SWITCHBOARD
domain. MMI training is seeded from a well-trained maximum likelihood (ML)
system which achieves WERs of 41.1% on the SWBD1 test set and 51.1% on
the SWBD2 test set. We update the Gaussian model parameters using Equa-
tions 3 and 4. As in the Alphadigits experiments, a Gaussian specific value
of Ds was used for our experiments. To validate our approach we calculated
the WER and the value of the MMI objective function (log P (W̄ |O)) over the
training set at each iteration.

From Table 3 we see that MMIE performs as expected. As measured over the
SWITCHBOARD training set, the overall MMI objective function increases
as training proceeds and the WER over the training set decreases, as does

Preprint submitted to Speech Communication 22



Table 3
MMIE Performance on the SWITCHBOARD and MALACH-CZ Tasks.

SWBD Training Set

MMIE MMI Objective Test Set WER(%)

Iteration WER (%) Function SWBD1 SWBD2 MALACH-CZ

ML 29.42 -2.37E05 41.1 51.1 44.3

1 27.55 -2.05E05 40.6 50.5 43.4

2 26.24 -1.81E05 40.5 50.0 42.4

3 25.62 -1.647E05 39.9 49.7 42.1

4 25.66 -1.53E05 40.2 50.5 41.9

5 41.6

6 41.5

The analysis of MMI performance over the SWITCHBOARD training set is
given to verify that the MMI implementation performs as expected.

the WER over the SWBD1 and SWBD2 test sets, until there is evidence of
overtraining at the third MMIE iteration. We see similar performance in the
MALACH Czech ASR task, also reported in Table 3.

5.2 Risk-Based Pruning of the Evidence Sets

The lattice segmentation procedure described in general in Section 2.2.2 and
applied to the Alphadigits task in Section 3.1, can also be applied to the
MALACH-CZ and SWITCHBOARD training sets. Following an initial lattice
generation decoding pass over the training set, we use lattice cutting with
respect to the reference transcription to produce pinched and pruned lattices
with binary confusion pairs.

We performed two sets of experiments with the SWITCHBOARD system and
one set with the MALACH-CZ system. In MALACH, a confusion pair occur-
rence threshold of 100 was used to create a single evidence set. In SWITCH-
BOARD, two threshold values, 5 and 75, were used to create two separate
evidence sets. Following the pruning procedure of Section 2.2.2, all confusion
pairs observed fewer times than the occurrence pruning threshold were pruned
back to the reference transcription.

As the occurrence threshold increases more confusion pairs are pruned away.
For example, Table 4 shows that the number of distinct confusion pairs in the
SWITCHBOARD training data drops from 2139 to 159 when the threshold
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Table 4
SWITCHBOARD and MALACH-CZ training set reduction by lattice pinching and
pruning.

SWITCHBOARD MALACH-CZ

Acoustic training data

(hours / utterances)
16.9 / 22580 62.4 / 24065

Initial confusion pairs

(types / tokens)
25948 / 99199 31467 / 120695

Occurrence threshold used

to select confusion pairs
5 75 100

Confusion pairs after

filtering (types / tokens)
2139 / 66349 159 / 33821 117 / 48302

Avg. confusion pairs

(per word / per utterance)
0.35 / 3.37 0.2 / 2.14 0.13 / 3.12

Reduced acoustic training

data (hours / utterances)
15.0 / 19687 13.0 / 15741 52.4 /15436

Avg. depth of N-Best lists

from pinched lattices
48.8 13.1 36.5

increases from 5 to 75. The number of confusion pairs per utterance drops
from 3.37 to 2.14. Due to this pruning of confusion pairs, many training set
lattices are reduced to a single word sequence, i.e. if no confusion pairs remain,
the pinched lattices will contain only the reference transcription. Since the loss
over these lattices is zero, these utterances do not contribute to the overall
training criterion and they are removed from the training data. As a result, by
retaining only confusion pairs that occur 100 times or more, the MALACH-CZ
training data is reduced from 62.4 hours to 52.4 hours, and similar reductions
are found in SWITCHBOARD.

5.3 PLMBRDT Performance on SWITCHBOARD and MALACH-CZ

The performance of the MBRDT training schemes is given in Table 5 for
the SWITCHBOARD systems and in Table 6 for the MALACH-CZ systems.
Both MBRDT and the ‘One-Worst’ approximation give improvements over
the well-trained MMI system. For all systems we report the p-values in paren-
theses under the significance test between each system and the MMIE baseline
system; the values in parentheses give the probability that there is no differ-
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Table 5
Minimum Bayes Risk Training performance on SWITCHBOARD in WER(%)

Occurrence

Threshold
5 75

PLMBRDT One Worst PLMBRDT One Worst

Iteration SWITCHBOARD1 - MMIE baseline 39.9

1 39.6 (0.082) 39.3 (0.01) 39.6 (0.050) 39.6 (0.080)

2 39.3 (0.018) 39.4 (0.11) 39.5 (0.103) 39.2 (0.011)

3 39.5 (0.230) – 39.4 (0.112) 39.8 (0.667)

Iteration SWITCHBOARD2 - MMIE baseline 49.7

1 49.7 (0.826) 49.5 (0.230) 49.7 (0.826) 49.7 (0.726)

2 49.5 (0.360) 49.6 (0.520) 49.4 (0.160) 49.4 (0.184)

3 49.4 (0.230) – 49.7 (0.834) 49.8 (0.928)

P-values relative to the MMI baselines are given in parentheses.

ence between that experiment and the baseline MMI system (Pallett et al.
(1990)).

On the SWITCHBOARD experiments we see that the PLMBRDT algorithm
and its One Worst variant perform comparably. There are not consistent dif-
ferences in performance over the two evidence spaces, suggesting that the
procedure is somewhat insensitive to the confusion pair occurrence pruning
threshold, at least in these experiments.

5.3.1 Contribution of the Loss Function to Estimation

A variant of PLMBRDT is applied to the MALACH-CZ system with the spe-
cific goal of investigating how the incorporation of the Levenshtein distance in
the estimation criterion influences WER reduction. Table 6 shows PLMBRDT
performance under the induced loss function lI(W̄ , W ′), which approximates
the Levenshtein distance as described in Equation 15. This algorithm attempts
to achieve

argmin
θ

∑
W ′∈W̃

lI(W̄ , W ′)P (W ′|O; θ) (27)

which incorporates both the induced loss function lI as well as the restriction
on the evidence space to the pinched lattice W̃ . We can replace the induced
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Table 6
Minimum Bayes Risk Training performance on MALACH-CZ in WER(%)

PLMBRDT One-Worst

Induced Loss 0/1 Loss

Iteration MALACH-CZ - MMIE baseline 41.5

1 41.4 (0.114) 41.4 (0.134) 41.3 (0.107)

2 41.3 (0.038) 41.3 (0.129) 41.2 (0.042)

3 41.3 (0.112) 41.3 (0.080) 41.0 (0.003)

4 41.3 (0.001) 41.3 (0.197) 41.1 (0.052)

5 41.1 (0.031) 41.4 (0.522) —

6 41.0 (0.013) 41.5 (0.478) —

P-values relative to the MMI baseline are given in parentheses.

loss function by the sentence level loss function

l0/1(W̄ , W ′) =

 0 W̄ = W ′

1 W̄ 6= W ′
(28)

which transforms the training objective into the MMI variant

argmax
θ

P (W̄ , O; θ)∑
W ′∈W̃ P (W ′, O; θ)

.

This simply reduces to performing MMI over the N-Best lists extracted from
the pinched lattice. Just to establish the relationship between the various
procedures, this variant is not PLMMI, since the contribution of the loss is at
the sentence level rather than the word level.

We perform this comparison to determine the relative contribution of the
pinched and pruned evidence space W̃ and the loss function lI used in estima-
tion. Starting from the MMIE baseline of 41.5% WER, the complete PLM-
BRDT algorithm based on the induced loss function reduces WER to 41.0%,
whereas the ‘0/1 Loss’ variant reduces WER only to 41.3%. Loosely speaking,
we conclude that the loss function contributes as much to the PLMBRDT
gains as does the refinement of the evidence space. This is also consistent with
the performance of the One Worst approach, which is constructed to pick the
most errorful hypothesis from the refined search space. We conclude that it is
beneficial to incorporate both the refined search space and the relative costs
of the competing hypotheses in PLMBRDT.
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6 Conclusion

We have demonstrated how techniques developed for Minimum Bayes Risk
Decoding make it possible to apply risk-based parameter estimation algo-
rithms to large vocabulary speech recognition tasks. Our approach starts with
the original derivations of Kaiser et al. (2000, 2002) which show how the Ex-
tended Baum Welch algorithm can be used to derive a parameter estimation
procedure to reduce expected loss over training data. That work focuses on in-
corporating the Levenstein distance into parameter estimation. However their
formulation is very general and also supports other types of string-to-string
loss functions. The link to Minimum Bayes Risk decoding is made through
the induced loss functions that arise from the lattice segmentation algorithms
developed for MBR search over large lattices. We use the formulation of Kaiser
et al. (2000, 2002), but replace the Levenstein distance with the induced loss
functions. Through this approximation we are able to compute the statistics
needed to apply the risk-based parameter estimation algorithm to large vo-
cabulary speech recognition tasks.

In these initial experiments we have focused on the most simple lattice pinch-
ing and pruning procedures. Each lattice path is aligned word-by-word against
the reference transcription, and binary word confusion pairs are identified.
These confusion pairs define the errors that the system will be trained to ‘fix’.
Many types of acoustic errors are excluded from this small number of confu-
sion pairs and as a consequence these errors are not addressed by training.
However, the value of this conservative approach is that it allows us to control
and study the behavior of the estimation algorithms over a manageable num-
ber of word pairs. A PLMBRDT variant, Pinched Lattice MMI, was derived
and applied to a whole word recognition task, and analysis of the performance
shows that it does indeed reduce the individual types of word errors in a way
that MMI does not. These same lattice pinching and pruning procedures can
be applied to large vocabulary speech recognition. As in the small vocabulary
case, we find that these PLMBRDT algorithms can be used to extend the gains
obtained by MMI. These results are given on two large vocabulary recognition
tasks, the conversational English SWITCHBOARD corpus, and the sponta-
neous Czech MALACH corpus. By varying the definition of the estimation
algorithms, we find evidence that the improvement beyond MMI comes from
both the inclusion of loss into estimation and from reducing the likelihood of
the errorful hypotheses that are identified by pinching and pruning.

As mentioned earlier, MMI is a particular instance of risk-based estimation.
Under the sentence level loss function, minimum risk estimation becomes

argmin
θ

∑
W ′

l0/1(W̄ , W ′)P (W ′|O; θ) = argmax
θ

P (W̄ |O; θ) , (29)
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which is the MMI objective function. From the view of minimizing risk, MMI
is better matched to Sentence Error Rate than to Word Error Rate. This is
clearly not a fatal shortcoming, in that MMI can be very effective in reduc-
ing Word Error Rate. However we find that MMI can be improved by using
discriminative training procedures that are matched to the task metric, and
we conclude that matching the estimation criterion to the task performance
metric is beneficial for speech recognition performance.
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