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Segmental Minimum Bayes-Risk Decoding for
Automatic Speech Recognition
Vaibhava Goel, Shankar Kumar, and William Byrne, Member, IEEE

Abstract—Minimum Bayes-Risk (MBR) speech recognizers
have been shown to yield improvements over the conventional
maximum a-posteriori probability (MAP) decoders through
N-best list rescoring and search over word lattices. We present
a Segmental Minimum Bayes-Risk decoding (SMBR) framework
that simplifies the implementation of MBR recognizers through
the segmentation of the N-best lists or lattices over which the
recognition is to be performed. This paper presents lattice cutting
procedures that underly SMBR decoding. Two of these procedures
are based on a risk minimization criterion while a third one
is guided by word-level confidence scores. In conjunction with
SMBR decoding, these lattice segmentation procedures give
consistent improvements in recognition word error rate (WER)
on the Switchboard corpus. We also discuss an application of
risk-based lattice cutting to multiple-system SMBR decoding and
show that it is related to other system combination techniques
such as ROVER. This strategy combines lattices produced from
multiple ASR systems and is found to give WER improvements in
a Switchboard evaluation system.

Index Terms—ASR system combination, extended-ROVER, lat-
tice cutting, minimum Bayes-risk decoding, segmental minimum
Bayes-risk decoding.

I. INTRODUCTION

I N ASR, an acoustic observation sequence
is to be mapped to a word string

, where are words belonging to a vocabulary .
We assume that a language is known; it is a subset of the

set of all word strings over . This language specifies the word
strings that could have produced any acoustic data seen by the
ASR system. We further assume that the ASR classifier selects
its hypothesis from a set of word strings. This set, called the
hypothesis space of the classifier, would usually be a subset of
the language. The ASR classifier can then be described as the
functional mapping .

Let be a real valued loss function that describes the
cost incurred when an utterance belonging to language
is mistranscribed as . An example loss function, the
one that we focus on in this paper, is Levenshtein distance [1]
that measures the minimum string edit distance (word error rate)
between and . This loss function is defined as the min-
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imum number of substitutions, insertions and deletions needed
to transform one word string into another.

Suppose the true distribution of speech and lan-
guage is known. It would then be possible to measure the per-
formance of a classifier as

(1)

This is the expected loss when is used as the classifica-
tion rule for data generated under . Given a loss func-
tion and a distribution, the classification rule that minimizes

is given by [2]

(2)

We note that while the sum in (2) is carried out over the entire
language of the recognizer, only those word strings with non
zero conditional probability contribute to the sum. Let

denote the subset of such that

(3)

Equation (2) can now be re-written as

(4)

We shall refer to the sum in (4)
as conditional risk and classifier given by this equation as the
Minimum Bayes-Risk (MBR) classifier.

The set serves as the evidence for the MBR classifier
using which it selects the hypothesis. Therefore, we shall refer
to as the evidence space for the acoustic observations . The
distribution describes the evidence space and shall be
referred to as the evidence distribution.

Our treatment so far assumes that the true distribution over
the evidence is available, however this is not the case in practice.
This distribution is obtained by applying Bayes rule

(5)

where the component distributions are approximated by models.
As is commonly done, is approximated as the language
model and is obtained from a hidden Markov model
acoustic likelihoods.

II. SEGMENTAL MINIMUM BAYES-RISK DECODING

For most practical ASR tasks, the spaces and are
large and the minimum Bayes-risk recognizer of (4) faces com-
putational problems. Previous work has focused on efficient
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search procedures to implement (4). Here we discuss an al-
ternate set of strategies that segment hypothesis and evidence
spaces of the MBR recognizer. The segmentation transforms the
original search problem into a series of search problems, which
due to their smaller sizes, can be more easily solved. These
strategies are collectively referred to as segmental MBR recog-
nition [3].

For rigor, we introduce a segmentation rule which di-
vides strings in the language into segments of zero or more
words each. We denote the segment of as . In this
way, we impose a segmentation of the space into segment
sets , where

, when applied to , generates evidence segment sets
. We now define the marginal probability

of any word string

(6)

The application of the segmentation rule to the hypothesis
space yields hypothesis segment sets . The concatena-
tion of the sets yields a search space

that is the cross-product of the hypothesis segment sets
. Concatenating the sets may introduce

new hypotheses since suffixes can be appended to prefixes in
ways that were not permitted in the original space. However
no hypotheses are lost through the concatenation. It is our
goal to search over this larger space and, by considering more
hypotheses, possibly achieve improved performance.

We now discuss the inclusion of the segmentation rule into
MBR decoding. We begin by making the strong assumption that
the loss function between any pair of evidence and hypothesis
strings , distributes over the segmentation,
i.e.,

(7)

Under this assumption, we can now state the following propo-
sition [4].

Proposition: An utterance level MBR recognizer given by

(8)

can be implemented as a concatenation

(9)

where

(10)

This proposition defines the Segmental MBR (SMBR) decoder.
Equation (10) follows by substituting (7) into (8).

A special case of segmental MBR recognition is particularly
useful in practice. It arises when the strings in the hypothesis
and evidence segment sets are restricted to length one or zero,
i.e., individual words or the NULL word. We also assume that
there is a 0/1 loss function on the segment sets

if
otherwise.

(11)

Under these conditions the segmental MBR recognizer of (10)
become

(12)

Equation (12) is the maximum a-posteriori decision over each
hypothesis segment set. In each segment set the posterior prob-
ability of all the words are first computed based on the evidence
space, and the word with the highest posterior probability is
selected. We call this procedure segmental MBR voting. This
simplification has been utilized in several recently developed

-best list and lattice based hypothesis selection procedures to
improve the recognition word error rate [5]–[7].

This summarizes the relationship between SMBR decoding,
MAP decoding and segmental MBR voting. From (8), if
no lattice cutting had been done, MBR decoding under the
0/1 loss function would lead to the standard MAP rule:

. Introducing hypothesis space
segmentation transforms the standard MAP rule to segmental
MBR voting as in (12).

For a given loss function, evidence space and hypothesis
space, it may not be possible to find a segmentation rule such
that (7) is satisfied for any pair of hypothesis and evidence
strings. However, given any segmentation rule, we can specify
an associated induced loss function defined as

(13)

From the discussion of Proposition 1, we see that the segmental
MBR recognizer is equivalent to an utterance level MBR recog-
nizer under the loss function . Therefore, the overall perfor-
mance of the SMBR recognizer under a desired loss function
will depend on how well approximates .

For ASR, we are particularly interested in the Levenshtein
loss function. Here, a segmentation of the hypothesis and
evidence spaces will rule out some string alignments between
word sequences. Therefore, under a given segmentation rule,
the alignments permitted between any two word strings from

and might not include the optimal alignment needed
to achieve the Levenshtein distance. Therefore, the choice of
a given segmentation involves a trade-off between two types
of errors: search errors from MBR decoding on large segment
sets and the errors in approximating the loss function due to
the segmentation.

The Segmental MBR framework does not provide actual hy-
pothesis and evidence space segmentation rules; it only specifies
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Fig. 1. Cutting a lattice based on node sets N and N (top). The lattice segment bounded by these sets is shown in the bottom panel by solid line paths.

the constraints that these rules must obey. The construction of
segment sets therefore remains a design problem to be addressed
in an application specific manner. In the following sections, we
present procedures to construct the segment sets from recogni-
tion lattice and -best lists under the Levenshtein loss function.

III. SMBR LATTICE SEGMENTATION

A recognition lattice is essentially a compact representation
for very large -best lists and their likelihoods. Formally, it is
a directed acyclic graph, or an acyclic weighted finite state ac-
ceptor (WFSA) [8] with a finite set of
states (nodes) , a set of transition labels , an initial state

, the set of final states , and a finite set of
transitions . The set is the vocabulary of the recognizer. A
transition belonging to is given by where

is the starting state of this transition, is the
ending state, is a word, and is a real number that
represents a ’cost’ of this transition. is often computed as the
sum of the negative log acoustic and language model scores on
the transition. Some of the transitions in the WFST may carry
the empty string ; these are termed transitions. A com-
plete path through the WFSA is a sequence of transitions given
by such that , ,
and . The word string associated with is . For
this word string we can obtain the joint acoustic and language
model log-likelihood as . In this
paper the finite state operations are performed using the AT&T
Finite State Toolkit [9].

It is conceptually possible to enumerate all lattice paths and
explicitly compute the MBR hypothesis according to (4) [10].
However, for most large vocabulary ASR systems it is compu-
tationally intractable to do so. Goel et al. [11] described an
search algorithm that utilizes the lattice structure to search for

the MBR word string. Building on that approach, we present
lattice node based segmentation procedures in which each seg-
ment maintains a compact lattice structure.

A. Lattice Segmentation Using Node Sets

The ASR word lattices are directed and typically acyclic,
therefore they impose a partial ordering on the lattice nodes.
We say if either or there is at least one path
connecting nodes and in the lattice and precedes
on this path.

Let be an ordered pair of lattice node sets such that

P1. For all nodes , there is at least one node
such that or .

P2. For all nodes , there is at least one node
such that or .

P3. For any , there is no node such that
.

Properties P1 and P2 essentially state that all lattice paths from
lattice start to lattice end pass through at least one node of
and one node of . Property P3 says that nodes of on any
lattice path precede nodes of on that path. An example of
and is depicted in the top panel of Fig. 1.

Each lattice path can now be uniquely segmented into three
parts by finding its first node that belongs to and its first node
that belongs to . The portion of the path from to the first
node belonging to is the first segment; from the first node
belonging to to the first node belonging to is the second
segment; and from the first node belonging to to a node in

is the third segment.
Segmentation of each lattice path, based on node sets ,
, , , defines a segmentation rules to divide the en-

tire lattice into three parts. In general, a rule for segmenting the
lattice into segments is defined by a sequence of lattice
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node sets , , such that all ordered pairs
obey P1-P3. The lattice seg-

ment, , is specified by the node sets and . We shall
say it is bounded on the left by and on the right by . An
example lattice segment bounded by and is shown in the
bottom panel of Fig. 1. We call such node based lattice segmen-
tation lattice cutting and the lattice cutting node sets as cut sets.

We note that lattice cutting yields segment sets that are
more constrained than those that could be obtained by explic-
itly enumerating all lattice paths and segmenting them. This is
due to the sharing of nodes between lattice paths. However, a
useful property of lattice cutting is that each segment retains the
compact lattice format. This allows for efficient implementation
of MBR search on each lattice segment.

We now show that for Levenshtein loss function, fewer lat-
tice segments necessarily result in a better approximation by
the induced loss to the actual loss. Suppose we have a collec-
tion of cut sets where and .
This collection identifies a segmentation rule such that the in-
duced loss between under the segmentation is

.
Suppose we discard a cut set from to form

. This defines a new induced loss function

By the definition of the Levenshtein distance [11, Appendix]

Hence, . Therefore, if we segment
the lattice along fewer cut sets, we obtain successively better ap-
proximation to the Levenshtein distance. However as the sizes of
the lattice segments increase, SMBR decoding on the resulting
segment sets will inevitably encounter more search errors. Our
goal is therefore to choose a set that will yield a “good” cut-
ting procedure. Such a cutting procedure produces small seg-
ments that still provide a good approximation of the overall loss.

In the following two subsections, we describe heuristic pro-
cedures to identify good cut sets.

B. Cut Set Selection Based on Total Risk

Our first lattice cutting procedure is motivated by the obser-
vation that under an ideal segmentation the conditional risk of
each hypothesis word string is unchanged after segmentation
[12]. The conditional risk after the segmentation is computed
under the marginal distribution of (6). Consequently the total
conditional risk of all lattice hypotheses

(14)

would also be unchanged under this segmentation. For conve-
nience we shall drop “conditional” and refer to as total risk.

We assume that the posterior probability of the most likely
lattice word string dominates the total risk computation. That is

(15)

Fig. 2. Sample word lattice. The MAP hypothesis is shown in bold.

Fig. 3. String-edit transducer T for the lattice in Fig. 2. Each transition in T
has the format x : y=c, which indicates that the input label is x, output label is
y, and the cost of mapping x to y is c.

where denotes the most likely word string in the lattice

(16)

and . Our goal, then, is to find a segmentation rule so
that under the ML approximation to the total risk, the following
holds:

(17)
Clearly if the rule segments and each into sub-
strings so that

(18)

then (17) holds. In the following, we describe how such a rule
can be derived by first producing a simultaneous alignment of
all word strings in against and then identifying cut sets in
that lattice.

1) Lattice to Word String Alignment via Finite State Compo-
sition: Consider the weighted lattice of Fig. 2. We obtain an
unweighted acceptor from this lattice by zeroing the scores
on all lattice transitions. We also represent the one-best word
string as an unweighted finite state acceptor whose
transitions are given as where ; this
labeling keeps track of both the words and their position in .

To compute the Levenshtein distance, the possible
single-symbol edit operations (insertion, deletion, substi-
tution) and their costs can be readily represented by a simple
weighted transducer [13]. is constructed to respect the po-
sition of words in (see Fig. 3). Furthermore, we can reduce
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Fig. 4. Transducer A for the lattice in Fig. 2.

the size of this transducer by including only transductions that
map words on the transitions of to the words in the best
path .

We can now obtain all possible alignments between
and by the weighted finite state composition

(19)

Constructed in this way, every path in specifies a word
sequence and a sequence of string-edit operations
that transform to . In its entirety, specifies all possible
string-edit operations that transform all word strings in to
(see Fig. 4).

has transitions where denotes an input-
output symbol pair . There are three types of transitions:
1) and which indicates a substitution of word

by word ; 2) and indicates that word is
an insertion; 3) and shows a deletion with
respect to . The costs on the transitions of arise from the
composition in (19).

2) Compact Representation of String Alignments: We now
wish to extract from the Levenshtein alignment between
every path and . This can be done in two steps. We
first perform a sequence of operations that transforms into
a weighted acceptor . contains all the alignments links
in , but represented in simplified form as an acceptor. We
next use a variant of dynamic programming algorithm on the
acceptor to extract the Levenshtein alignment between
and every word string that was originally in .

The transformation of into is as follows.

1) Project alignment information onto the
input labels of , as follows:

• Sort the nodes of topologically and
insert them in a queue . Associate with
each node an integer . A value of

would indicate that all partial
lattice paths ending at state have been
aligned with respect to . Set .
• While is nonempty
a) . .
b) For all transitions

leaving , perform one of the following:
i) Substitution: If has ,

, set and .
ii) Deletion: If has and

, set .
iii) Insertion: If has and
, set and .

2) Convert the resulting transducer from
Step 1 into an acceptor by projecting onto
the input labels.
3) For the weighted automaton generated
in Step 2, generate an equivalent weighted
automaton without -transitions.

These three operations transform into a weighted acceptor
that contains the cost of all alignments between all lattice

word strings and the best path (see Fig. 5). We now relate the
properties of the lattice and the finite state machines and

. By construction, corresponding to any where
, there exist paths such that

1) , , where
if ’s in are removed and if ’s
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Fig. 5. Acceptor A for the lattice in Fig. 2.

in are removed. is total cost of the alignment
specified by .

is the cost of a transition on . Furthermore, for each
there is a corresponding that specifies the identical
alignment. That is

2) where
is the string edit

distance between and along the alignment
specified by and , and if each is
stripped of its and subscripts.

is the cost of a transition on .
3) Optimal Computation of Lattice to Word String Align-

ment: We now discuss a procedure to extract the optimal align-
ment between paths and . We first note that if
contained the alignment of only one word string against ,
we could find the desired optimal alignment through a stan-
dard dynamic programming procedure [14]–[16] that traverses
the nodes of in topologically sorted order and retains back-
pointers to the optimal partial paths to all nodes. However, since

contains alignments of multiple strings against , we need
to extend the dynamic programming procedure to keep track of
the identity of word strings leading into nodes. This is described
in the following procedure.

1) Sort the nodes of in reverse topo-
logical order (i.e., lattice final nodes
first) and insert them in a queue . For
each node , let denote the min-
imum cost of all paths that lead from
node to the lattice end node and carry

the word string . Let be the imme-
diate successor node of on the path that
achieves .
2) For each final node of , set

.
3) While is nonempty
a) . .
b) Let denote the set of lattice tran-

sitions leaving state . is
either or . Let denote the
set of unique word strings on the paths
starting from state . The word string

starts with the word and has a
suffix .
c) For each ,
i) Compute:

Denote .
ii) . .

Step 3 prunes all transitions leaving
that are not needed for any optimal align-
ment passing through .
4) The procedure terminates upon reaching
the start node of . The optimal
alignment cost of each complete path
can be readily obtained from , and
the complete alignment can be obtained by
following the backtrace pointers stored in

arrays.

4) An Efficient Algorithm for Lattice to Word String Align-
ment: The alignment procedure described in the previous sec-
tion involves the computation of the cost for each state

in . This cost is computed for all unique word strings
leaving state . Therefore, it involves enumerating all the word
sub-strings in the word lattice . While this is definitely im-
possible for most word lattices of interest, this description does
clearly present the inherent complexity of the lattice to string
alignment problem. In practice, we do not retain the cost
for all word sequences leaving . For each state , we approxi-
mate as in Step 3(c)ii. We
now present the procedure that results from this approximation.

1) Sort the nodes of in reverse topo-
logical order (i.e., lattice final nodes
first) and insert them in a queue . For
each node , let denote the minimum
cost of all paths that lead from node to
the lattice end node.
2) For each final node of , set .
3) While is nonempty
a) . .
b) Let denote the set of lattice tran-
sitions leaving state . is
either or . Let denote the
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Fig. 6. Acceptor ^A for the lattice in Fig. 5.

set of unique words on the transitions
starting from state .
c) Initialize .
d) For each ,
i) Compute:

Denote .
ii) .
e) Compute:

f) Prune transitions and .
4) The procedure terminates upon reaching
the start node of .

As a result of the simplification, the information maintained
by the and the arrays can be stored with the lattice
structure of . This is therefore a pruning procedure of and
we call the resulting acceptor . For the example of Fig. 5,

is shown in Fig. 6.
The transitions of have the form . Either

a) that indicates the word has aligned with
(substitution) or b) indicates that word occurs as
an insertion before . We can insert -transitions whenever the
partial path ending on state has aligned with and the partial
path ending on , a successor node of has aligned with .
This will allow for deletions.

We note that the acceptors and have identical word se-
quences, therefore, we can get the acoustic and language model
scores for by composing it with .

5) Risk Based Lattice Cutting: Referring back to Sec-
tion III-A, we introduce lattice segmentation as the process
of identifying lattice cut sets to satisfy property P1-P3. The
process of generating identifies a correspondence between
each word in and paths in . Each word in is aligned
with a collection of arcs in . These arcs either fall on distinct
paths (e.g., hello.0 in Fig. 7) or form connected subpaths (e.g.,

in Fig. 7). For each word , we define the lattice
cut node set as the terminal nodes of all the subpaths that
align with . This defines cut sets if there are words in

. We also define as .
In this way, we use the alignment information provided in
to define the lattice cut sets that segment the lattice into

sublattices. We call this procedure Risk-Based Lattice Cutting
(RLC). This procedure ensures that every lattice path passes

through exactly one node from each lattice node cut set. A de-
terminized version of the lattice from Fig. 1 and its acceptor
are shown in the top and bottom panels of Fig. 7. The bottom
panel also displays the cuts obtained along the node sets.

The segmentation procedure, modulo the errors introduced
by the approximate procedure used to generate , is optimal
with respect to the MAP word hypothesis. Every path
has a corresponding path in such that

. In this way, the
costs in agree with the loss function desired in Risk-based
lattice cutting (RLC).

6) Periodic Risk Based Lattice Cutting: The alignment ob-
tained in Section III-B1 is ensured to be optimal only relative to
the MAP path. It is not guaranteed that
for . Following the discussion in Section III-A, we note
that if we segment the lattice along fewer cut sets, we obtain
better approximations to the Levenshtein loss function. How-
ever, this leads to larger lattice segments and therefore greater
search errors in MBR decoding.

One solution that attempts to balance the trade-off be-
tween search errors and errors in approximating the loss
function is to segment the lattice by choosing node sets
at equal intervals or periods. A period of specifies the
cut sets , , and so on. Therefore, the set

where is the largest in-
teger so that periodic cuts can be found. We call this procedure
periodic risk-based lattice cutting (PLC). If the loss function
approximation obtained by cutting into segment sets is
good, the cutting period tends to be smaller and vice-versa.
The choice of the cutting period is found experimentally to
reduce the word error rate on a development set. We note that
the RLC procedure is identical to the PLC procedure with
period 1. Fig. 8 shows the sub-lattices obtained by periodic
risk-based lattice cutting on the lattice from Fig. 7.

C. Cut Set Selection Based on Word Confidence

Our next procedure to identify good lattice cutting node sets
uses word level confidence scores [17]. In this procedure word
boundary times are used to derive alignment between sentence
hypotheses that avoids computing the alignment corresponding
to the exact Levenshtein distance [18]. As before, we begin by
identifying the MAP lattice path. We compute the confidence
score of the link lattice link on that path as follows.

1) Compute the lattice forward-backward
probability of [17].
2) Identify other lattice links that have
a time overlap of at least 50% with .
Among these links, keep only those that
have the same word label as .
3) Compute the lattice forward-backward
probabilities of all these links. Add
their probabilities to that of to obtain
the confidence score for .

Next, high confidence links on the MAP path are identified
by comparing each link’s confidence score to a global threshold.
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Fig. 7. (top) Word latticeW and (bottom) its acceptor ^A showing the Levenshtein alignment betweenW 2 W and ~W (shown as the path in bold). The bottom
panel shows the segmentation along the 6 nodesets obtained by the risk-based lattice cutting procedure.

Fig. 8. Lattice segments obtained by periodic risk-based lattice cutting on the lattice from Fig. 7 (Period = 2).

Consecutive high confidence links identify high confidence lat-
tice regions, and lattice cut node sets are derived as follows.

1) For each stretch of consecutive high
confidence links along the MAP path, iden-
tify the leftmost and the rightmost links,
denoted and , respectively.
2) Find all those lattice links that have
a time overlap of more than 50% with .
The start nodes of these links form the
left boundary node set of a lattice cut.
3) Find all those lattice links that have
a time overlap of more than 50% with .
The end nodes of these links form the
right boundary node set of the lattice
cut.
4) Add nodes to the left and right
boundary node sets to ensure that
properties P1 and P2 are met.

We note that in contrast to risk-based lattice cutting, this pro-
cedure allows a lattice path to pass through more than one node
of a given node set. The top panel of Fig. 9 depicts confidence
based cutting of the lattice of Fig. 1.

We now introduce the notion of “pinching” in a lattice seg-
ment. If the largest value of the marginal probability (6) in a
lattice segment is above a threshold, we collapse the lattice seg-
ment to the MAP path belonging to the segment. The bottom
panel of Fig. 1 shows the pinched version of the middle cut; the
high confidence region can be represented by a single word se-
quence.

D. SMBR Decoding of a Lattice Segment

To generate SMBR hypothesis from a lattice segment (10)
we require for each word string in that segment. Since
our lattice cutting node set selection procedures described above
may yield multiple start nodes which may be successive nodes
on some path through , care must be taken in computing

. It is found by summing over all paths through
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Fig. 9. Segmenting the lattice from Fig. 1 into regions of low and high confidence based on word confidence scores.

along which is the longest subsequence in , i.e., as the
sum over all these paths whose longest subpath in is . In
the following we describe a modified lattice forward-backward
procedure that respects this restriction and yields the desired
marginal probability.

Let be a complete path in the lattice and let be a prefix
of . We use to denote the joint log-likelihood of ob-
serving and the acoustic segment that corresponds to .

can be obtained by summing the log acoustic and lan-
guage model scores present on the lattice links that correspond
to . Similarly, for a suffix of , we use to denote
the joint log-likelihood of observing together with its corre-
sponding acoustic segment, conditioned on the starting node of

. can be computed as .
Let denote the first node of an arbitrary lattice path

segment . Let denote the last node of , and let
be the set of all lattice nodes through which passes,

including and . Let be a path in a lat-
tice segment bounded by node sets and . Let

and . We first define a lattice forward
probability of , , which is the sum of partial path prob-
abilities of all partial lattice paths ending at . That is,

(20)

However, paths that pass through any node of before they
reach would contribute a segment longer than to this cut.
We exclude their probability by defining a restricted forward
probability of , restricted by the node set , as

(21)

We also define lattice backward probability of the final node
of , using the backward log-likelihood , as

(22)

We have stated earlier (Section III-A) that each lattice path
can be segmented into three parts by finding its first node be-
longing to and its first node belonging to . As a result
there is no path in the sub-lattice that contains two nodes in .
We therefore do not need to define a restricted backward prob-
ability analogous to the restricted forward probability.

Using the restricted forward probability of and lattice
backward probability of , the marginal probability of can
be computed as

(23)
where denotes the acoustic segment corresponding to

.
We note that if the node set is such that no lattice path

passes through two nodes of , the restricted forward proba-
bility of , , will be identical to its lattice forward
probability . In this case, the marginal probability of
will be obtained by summing over all lattice paths that pass
through . This is the well known lattice forward-backward
probability of [19].

Having obtained , the SMBR hypothesis can be
computed using the search procedure described by Goel
et al. [11]. Alternatively, an -best list can be generated from
each segment and -best rescoring procedure of Stolcke et al.
[10] can be used.

IV. SMBR -BEST LIST SEGMENTATION

An -best list is an enumeration of most likely word strings
given an acoustic observation; it can be generated from a lattice
as word strings with highest log likelihood values. An -best
list can itself be considered as a special “linear” lattice where
each node, except the start and end nodes, has exactly one in-
coming and one outgoing transition. An example -best list de-
rived from the lattice of Fig. 7 is displayed as a linear lattice in
Fig. 10.
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Fig. 10. N-best list from the lattice in Fig. 7.

Fig. 11. Joining two segment sets.

For SMBR rescoring of an -best list we can apply the lattice
cutting methods described in Sections III-C and III-B. Alterna-
tively, we could use the ROVER [5] procedure which was origi-
nally proposed by Fiscus [5] to combine MAP hypotheses from
multiple ASR systems, and later extended to -best lists [20].
ROVER is similar to total risk based cutting of -best lists with
the most significant difference being that the total risk based lat-
tice cutting allows for multiple consecutive words in each seg-
ment set (Fig. 7); in contrast, ROVER yields at most one con-
secutive word in a segment set.

An alternative -best list SMBR rescoring procedure that
generalizes both ROVER and total risk based lattice cutting is a
procedure termed e-ROVER, as described here. We first define
a process of joining two consecutive segment sets. In joining
two segment sets we replace those two sets by one expanded set
that contains all the paths from the original pair of sets. This is
illustrated in Fig. 11.

The e-ROVER procedure for constructing SMBR evidence
and hypothesis spaces can be described as follows [3].

1) Segment -best lists, as in ROVER, so
that each segment contains at most one
consecutive word [5].
2) Determine the posterior probability of
words in segment sets, according to (6)
and (12).
3) “Pinch” segment sets in which the
largest value of the posterior probability
is above a pinching threshold. Join all
adjacent unpinched segment sets.

The procedure of pinching and expanding the segment sets is
shown in Fig. 12. Hypotheses in e-ROVER are formed sequen-
tially according to (9) and (10).



244 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 12, NO. 3, MAY 2004

Fig. 12. e-ROVER WTN construction.

That e-ROVER generalizes total risk based lattice cutting is
evident by observing that the segment sets in e-ROVER contain
hypotheses which were not present in the original -best lists.
Furthermore, we note that the hypothesis and evidence spaces in
e-ROVER are identical to those in ROVER. However, the loss
function in e-ROVER provides a better approximation to the
word error rate due to the improved segmentation. Since they are
both instantiations of (9), e-ROVER directly extends ROVER
and would be reasonably expected to yield a lower word error
rate.

V. APPLICATIONS TO ASR SYSTEM COMBINATION

In addition to its role in simplifying MBR decoding, the
segmental MBR decoding framework has applications to ASR
system combination. These techniques involve combining
either word lattices or -best lists produced by several ASR
systems.

Let be recognition lattices or -best
lists from ASR systems. Let be the evidence dis-
tribution of the system over . A common evidence space
can be obtained by taking a union or intersection of these lat-
tices or -best lists. The evidence distribution over this space
can be derived by taking the arithmetic mean

or a geometric mean

of the evidence distributions.

In the case of -best lists, the SMBR recognition can be car-
ried out over the -best list generated above. The SMBR de-
coding procedures that can be applied on this space include
ROVER [5] and e-ROVER as described in Section IV.

Combination of lattices from multiple systems is not as
straightforward. One possible scheme is described in the
following.

1) Select the hypothesis with the overall
highest posterior probability among the
MAP hypotheses from the systems. This
is obtained as

(24)

(25)

2) Segment each lattice with respect to
using the periodic risk-based lattice-cut-
ting procedure (Section III-B) into
sections. This gives us sub-lattices
given by . We
note that need not be present in all
of the lattices since the procedure de-
scribed in Section III-B can be used to
align the lattice to any word string.
3) For each section , we
now create new segment-sets by com-
bining the corresponding sub-lattices

. We have considered two
combination schemes:
(a) We perform a weighted finite-state
intersection [8] of the corresponding
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Fig. 13. Multiple-system SMBR decoding via lattice combination.

sub-lattices. This is equivalent to mul-
tiplying the posterior probability of
hypotheses in the individual sub-lattices.

(26)

(27)

(28)

(b) We perform a weighted finite state
union of the corresponding sub-lattices
followed by a weighted finite state deter-
minization under the semiring [8].
This is equivalent to adding the posterior
probability of hypotheses in the indi-
vidual sub-lattices.

(29)

(30)

(31)

4) Finally, we perform SMBR decoding ((10)
and (9) in Section II) on the sub-lat-

tices obtained by the above combina-
tion schemes.

A schematic of multi-system SMBR decoding using three
sets of lattices is shown in Fig. 13.

VI. SMBR DECODING EXPERIMENTS

All our SMBR decoding experiments were carried out on
large vocabulary ASR tasks. We first present results of the risk
and confidence based lattice cutting procedures described in
Section III. We then present experiments with multiple system
combination using the -best list based e-ROVER procedure
described in Section IV and the lattice based system combina-
tion scheme presented in Section V.

A. SMBR Recognition With Lattices

Our lattice cutting procedures were tested on the Switch-
board-2 portion of the 1998 Hub5 evaluation set (SWB2)
and Switchboard-1 portion of the 2000 Hub5 evaluation set
(SWB1). For both these test sets an initial set of one-best
hypotheses were generated using the AT&T large vocabulary
decoder [8]. HTK [21] cross-word triphone acoustic models,
trained on VTN-warped data, with a pruned version of SRI 33K
trigram word language model [20] were used. The one-best
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Fig. 14. Performance of periodic lattice cutting with different cutting periods for A SMBR decoding on the SWB2 held out set.

hypotheses were then used to train MLLR transforms, with two
regression classes, for speaker adaptive training (SAT) version
of the acoustic models. These models were used to generate
an initial set of lattices under the language model mentioned
above. These lattices were rescored using the unpruned version
of SRI 33K trigram language model and then again using
SAT acoustic models with unsupervised MLLR on the test set.
Details of the system are given in JHU 2001 LVCSR Hub5
system description [22].

Lattices were segmented using the three procedures described
in this article: risk based lattice cutting (Section III-B5), peri-
odic risk based lattice cutting (Section III-B6), and confidence
based lattice cutting (Section III-C). Once a lattice segmenta-
tion was obtained, the following procedures were investigated
to compute the SMBR hypothesis. An search over each seg-
ment [11] attempts an exact, if heavily pruned, implementation
of the MBR decoder. Alternatively, an -best list was generated
from each segment and then rescored using the min-risk proce-
dure [10], [11]. As a third approach, the e-ROVER procedure
of Section IV was applied. In the latter two techniques, -best
lists of size 250 were used. For confidence based lattice cutting,
a confidence threshold of 0.9 was used in all cases.

For periodic risk based lattice cutting, the optimal segmen-
tation period was determined on two held out sets, one corre-
sponding to each test set. Cutting periods of 1 through 14 were
tried and for each segmentation the SMBR hypothesis was gen-
erated using one of , -best list rescoring, or e-ROVER pro-
cedures. Fig. 14 presents the word error rate of the SMBR
decoding on the held out set corresponding to the SWB2 test
set. As can be seen, the optimal cutting period is 6 on this set.

-best rescoring and e-ROVER also achieved their optimal per-

TABLE I
SMBR LATTICE RESCORING PERFORMANCE

formance at period 6 on this data set. On the held out set corre-
sponding to the SWB1 test set, the optimal cutting period was
found to be 4 under all three hypothesis generation procedures.
This suggests that optimal lattice cutting period is relatively
insensitive to the hypothesis generation method but should be
tuned to the task to which periodic lattice cutting is applied.

Table I presents a comparison of different lattice segmenta-
tion and hypothesis generation procedures. PLC was performed
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Fig. 15. Fraction of pinched segment sets and word error rate performance of e-ROVER as a function of pinching threshold. The rightmost point in the top panel
shows that fraction of pinched sets is 0 when pinching threshold exceeds 1.0. The WER in this condition is given in the rightmost point of the lower panel.

with a cutting period of 6 (on both test sets, even though 4 was
found to be optimal for SWB1).

We note that all SMBR procedures yielded a gain over the
MAP baseline for both test sets. In addition, PLC and confi-
dence based lattice segmentation consistently further improved
the word error rate over the no segmentation case, which advo-
cates the use of SMBR procedures over MBR decoding without
segmentation. Among the various hypothesis generation pro-
cedures, PLC with period 6 was found to have the best per-
formance. In all cases, e-ROVER performance was the best,
although with period 6, e-ROVER is ahead only by a small
margin.

B. System Combination Results

1) -Best List Combination: The experiments involving
combination of -best lists from multiple systems were
performed on a multi-lingual language independent acoustic
modeling task [23]. This task consisted of combining recog-
nition outputs in Czech language from three systems: a
triphone system trained on one hour of Czech voice of America
(Cz-VOA) database (Sys1); a triphone system trained on 72 hrs.
of English and then adapted to one hour of Czech (Sys2); and
Sys1 output rescored with Sys2 models. The test set consisted
of 748 held out utterances from the Cz-VOA broadcast [24].
250 hypotheses were taken from each system along with their
distributions restricted to these 250-best lists. The baselines
(MAP hypotheses) in these systems had error rates of 29.42%,
35.24%, and 29.22%, respectively.

We created a single -best list of up to 750 hypotheses by
merging (via union operations as described in Section V) the
250-best lists from the 3 systems. On this merged list, -best
ROVER yields an absolute improvement of 3.28% over the
29.22% baseline. Its comparison with e-ROVER is shown
in Fig. 15. The top panel in this figure shows the fraction
of the pinched sets as a function of the pinching threshold.
A threshold of 0.0 pinches all the sets, equivalent to -best
ROVER, while any threshold above 1.0 results in no pinching
at all. We note that a segment set is pinched when largest
value of posterior probability in the set is greater than or equal
to the pinching threshold. Since regions of high confidence
have segments which have a posterior probability of 1.0,
these segments are pinched even at a threshold of 1.0. As the
pinching threshold increases (i.e., for fewer pinched sets) the
number of hypotheses in the expanded sets grows so large that
MBR rescoring becomes infeasible without heavy pruning.
For pinching thresholds greater than 1.0 we are effectively
performing MBR rescoring with the large hypothesis space
obtained by full expansion of all segment sets (Fig. 11). By
contrast, the original MBR decoding has only the unexpanded

-best list as its hypothesis space. This points out the need to
achieve a proper balance between size of the hypothesis space
versus the computational complexity of the MBR search.

The bottom panel in Fig. 15 shows the effect of pinching
threshold on the word error performance of e-ROVER. We note
that performance under all thresholds is better than the per-
formance of -best ROVER. The threshold of 1.0 yields the
best performance of 0.56% absolute improvement over -best
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TABLE II
EXPERIMENTS: MULTIPLE-SYSTEM SMBR DECODING VIA

LATTICE COMBINATION

ROVER and hence a total of 3.84% absolute over the baseline
error rate of 29.22%. We see a degradation in performance for
thresholds larger than 1.0, owing to the pruning of the expanded
sets.

2) Lattice Combination: Our experiments with combining
lattices from multiple systems and their SMBR decoding were
carried out on the development set of the LVCSR RT-02 evalua-
tion. A description of the acoustic and language models used is
given in the JHU LVCSR RT-02 system description [25]. In this
system, MMI acoustic models were used to generate an initial
set of lattices under the SRI 33K trigram language model [20].
These lattices were then rescored with DLLT acoustic models
and DSAT acoustic models [26] to yield two other sets of lat-
tices. These three sets of lattices were then used for system com-
bination as described in Section V.

The performance of the lattice combination experiments is
reported in Table II. In these experiments, we use a cutting pe-
riod of 6 for the periodic risk-based lattice cutting. We tested
these procedures on the Switchboard1 portion of the 2000
Hub5 evaluation set (SWB1), Switchboard2 portion of the
1998 Hub5 evaluation set (SWB2) and the Switchboard-Cel-
lular development set released in 2000 (SWB2C). The Table II
is organized as follows. We first report the performance of the
MAP hypothesis from each system. We next give results by a
simple system combination technique (Lattice-Intersect) that
intersects the three lattices and obtains the MAP hypothesis
from the resulting lattice [8]. We also report results by the
ROVER system combination scheme [5] on the MAP hy-
potheses from the three systems. We then finally present the
results by the two multi-system SMBR decoding schemes
(Union-SMBR and Intersect-SMBR) presented in Section V.
The e-ROVER procedure was used to compute the MBR hy-
pothesis in both these schemes.

We observe that the multiple system SMBR decoding
via either the union or intersection scheme is better than
1) intersecting lattices and obtaining the MAP hypothesis or
2) performing a ROVER on the MAP hypotheses from the three
systems. Furthermore, we note that adding posteriors of the
paths in the sub-lattices (Union-SMBR) turns out to be better
than multiplying them (Intersect-SMBR).

VII. CONCLUSIONS

We have presented the Segmental Minimum Bayes-Risk
Decoding framework for Automatic Speech recognition.
This framework allows us to decompose an utterance level
Minimum Bayes-Risk Recognizer into a sequence of smaller
sub-utterance recognizers. Therefore, a large search problem
is decomposed into a sequence of simpler, independent search
problems. Though the utterance level MBR decoder is imple-
mented as a sequence of MBR decoders on hypothesis and
evidence space segments, the acoustic data is not segmented at
all. The marginal probability of a word string within a segment
set is computed based on acoustic and language model scores
that span the entire utterance ; these might have a much greater
span than any string in the segment set. In addition, there is no
assumption of linguistic independence between word strings
belonging to adjacent segments. This is not the case when the
entire conversation level decoder is simplified to decoders at
the utterance level; by contrast, in that case we do segment
acoustic data and assume acoustic and linguistic independence
between utterances.

We have described several procedures for segmenting word
lattices into sub-lattices for SMBR decoding. The confidence
based lattice cutting relies on word-level confidences and time-
marks in a lattice to perform segmentation; while total and peri-
odic risk based lattice cutting strategies attempt to find segments
that preserve the total Bayes-risk of all word strings in the lat-
tice. These procedures identify node sets that can be used to
segment the lattice. However, we have shown that the selection
of cut sets must be made considering both SMBR search errors
and errors due to poor approximation of the loss function. We
introduced periodic risk based lattice cutting as a cut set selec-
tion procedure that finds a balance between these two types of
modeling errors. Lattice cutting, in conjunction with SMBR de-
coding gives consistent improvements as the final stage of an
LVCSR evaluation system. In addition, the risk based cutting
procedure has been shown to form the basis for novel discrimi-
native training procedures [27]. We note that the two cutting pro-
cedures give similar WER performance although the risk based
cutting procedure is more suited to system combination since
it does not rely on word boundary times which can easily vary
across multiple systems.

We have discussed how popular ASR system combination
techniques such as ROVER and -best ROVER are instances
of SMBR recognition. In the SMBR framework, we presented
the extended-ROVER technique that improves upon -best
ROVER by better approximating the WER and improving
performance on a language independent acoustic modeling
task.

Finally, we showed how the risk-based lattice segmentation
can be applied to multiple system SMBR decoding on lattices
produced by several ASR systems. We presented two schemes
to merge posteriors of word strings in sub-lattices and then per-
forming SMBR decoding. The system combination scheme per-
forms better than the output produced by a MAP decoder on
each of the individual lattices or on a intersection of the lattices.
These techniques are effective in combining results from dif-
ferent systems, as is particularly apparent from the multilingual
system combination experiments.
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SMBR recognition has been shown to be a useful framework
for automatic speech recognition. It transforms the overall MBR
recognition problem into a sequence of smaller, independent de-
cisions that are easier to solve than the original problem. As a
modeling technique, it allows us to focus in on individual recog-
nition errors during the search process. We have also shown how
SMBR can be used to describe and enhance ASR system com-
bination procedures. SMBR is a powerful framework for the de-
velopment and description of novel ASR decoding strategies.

ACKNOWLEDGMENT

The authors would like to thank P. Podvesky of Charles Uni-
versity, Prague, for useful discussions about lattice cutting. They
would also like to thank M. Riley for use of the AT&T Large Vo-
cabulary decoder and FSM Toolkit and A. Stolcke for the use of
the SRI language model.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting spurious inser-
tions and deletions of ones,” Probl. Inform. Transmiss., vol. 1, no. 1, pp.
8–17, 1965.

[2] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and
Selected Topics. Oakland, CA: Holden-Day, 1977.

[3] V. Goel, S. Kumar, and W. Byrne, “Segmental minimum Bayes-risk
ASR voting strategies,” in Proc. ICSLP 2000, vol. 3, Beijing, China,
2000, pp. 139–142.

[4] V. Goel and W. Byrne, “Recognizer output voting and DMC in minimum
Bayes-risk framework,” Res. Notes no. 40, Center for Language and
Speech Processing, 2000.

[5] J. Fiscus, “A post-processing system to yield reduced word error rates:
Recognizer output voting error reduction (ROVER),” in Proc. ASRU
1997, 1997, pp. 347–354.

[6] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech recog-
nition: Word error minimization and other applications of confusion net-
works,” Comput. Speech Lang., vol. 14, no. 4, pp. 373–400, 2000.

[7] G. Evermann and P. Woodland, “Posterior probability decoding, confi-
dence estimation and system combination,” in Proc. NIST Speech Tran-
scription Workshop, College Park, MD, 2000.

[8] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in
speech recognition,” Comput. Speech Lang., vol. 16, no. 1, pp. 69–88,
2002.

[9] , (2001) AT&T General-Purpose Finite-State Machine Software
Tools. [Online]. Available: http://www.research.att.com/sw/tools/fsm/

[10] A. Stolcke, Y. Konig, and M. Weintraub, “Explicit word error mini-
mization in N-best list rescoring,” in Eurospeech 1997, vol. 1, Rhodes,
Greece, 1997, pp. 163–165.

[11] V. Goel and W. Byrne, “Minimum Bayes-risk automatic speech recog-
nition,” Comput. Speech Lang., vol. 14, no. 2, pp. 115–135, 2000.

[12] S. Kumar and W. Byrne, “Risk based lattice cutting for segmental min-
imum Bayes-risk decoding,” in ICSLP 2002, Denver, CO, 2002, pp.
373–376.

[13] M. Mohri, F. Pereira, and M. Riley, “The design principles of a weighted
finite-state transducer library,” Theor. Comput. Sci., vol. 231, no. 1, pp.
17–32, 2000.

[14] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[15] D. Sankhoff and J. B. Kruskal, Time Warps, String Edits and Macro-
molecules: The Theory and Practice of String Comparison. Reading,
MA: Addison-Wesley, 1983.

[16] M. Mohri, “Edit-distance of weighted automata,” in Proc. 7th Int. Conf.
Implementation and Application of Automata, J.-M. Champarnaud and
D. Maurel, Eds., 2002.

[17] V. Goel, S. Kumar, and W. Byrne, “Confidence based lattice segmen-
tation and minimum Bayes-risk decoding,” in Proc. Eurospeech 2001,
vol. 4, Aalborg, Denmark, 2001, pp. 2569–2572.

[18] F. Wessel, R. Schlueter, and H. Ney, “Explicit word error minimization
using word hypothesis posterior probabilities,” in Proc. ICASSP-01, Salt
Lake City, UT, 2001, pp. 33–36.

[19] F. Wessel, K. Macherey, and R. Schlueter, “Using word probabilities
as confidence measures,” in Proc. ICASSP-98, Seattle, WA, 1998, pp.
225–228.

[20] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. R. Gadde, M.
Plauche, C. Richey, E. Shriberg, K. Sonmez, F. Weng, and J. Zheng,
“The SRI March 2000 Hub-5 conversational speech transcription
system,” in Proc. NIST Speech Transcription Workshop, College Park,
MD, 2000.

[21] S. Young et al., The HTK Book, 3.0 ed., 2000.
[22] W. Byrne, A. Gunawardana, S. Kumar, and V. Venkataramani, “The JHU

March 2001 Hub-5 conversational speech transcription system,” in Proc.
NIST LVCSR Workshop, 2001.

[23] W. Byrne, P. Beyerlein, J. Huerta, S. Khudanpur, B. Marthi, J. Morgan,
N. Peterek, J. Picone, D. Vergyri, and W. Wang, “Toward language in-
dependent acoustic modeling,” in Proc. IEEE Conf. Acoustics, Speech,
and Signal Processing, Istanbul, Turkey, 2000, pp. 1029–1032.

[24] Voice of America Broadcast News Czech Transcript Corpus, by J. Psutka
et al.. (2000). [Online]. Available: http://www.ldc.upenn.edu/Cat-
alog/CatalogEntry.jsp?catalogId=LDC2000T53

[25] W. Byrne, V. Doumpiotis, S. Kumar, S. Tsakalidis, and V. Venkatara-
mani, “The JHU 2002 large vocabulary speech recognition system,” in
Proc. NIST RT-02 Workshop, 2002.

[26] S. Tsakalidis, V. Doumpiotis, and W. Byrne, “Discriminative linear
transforms for feature normalization and speaker adaptation in HMM
estimation,” in Proc. ICSLP 2002, Denver, CO, 2002, pp. 2585–2588.

[27] V. Doumpiotis, S. Tsakalidis, and W. Byrne, “Lattice segmentation
and minimum Bayes-risk discriminative training,” in Proc. Eurospeech
2003, Geneva, Switzerland, 2003.

Vaibhava Goel received the B.Tech. degree in elec-
trical engineering from the Indian Institute of Tech-
nology, Kanpur, and the M.S. and Ph.D. degrees, both
in biomedical engineering, from Johns Hopkins Uni-
versity, Baltimore, MD.

He is currently working as a Research Staff
Member at IBM’s T. J. Watson Research Center,
Yorktown Heights, NY. His research is in application
of statistical modeling and pattern classification to
speech and language.

Shankar Kumar received the B.E. degree in elec-
trical and electronics engineering from the Birla In-
stitute of Technology and Science, Pilani, India, in
1998 and the M.S.E degree in electrical engineering
from the Johns Hopkins University, Baltimore, MD,
in 2000, where he is pursuing a Ph.D. degree at the
Center for Language and Speech Processing in the
Department of Electrical and Computer engineering.

His research interests include statistical modeling
and classification techniques, particularly for ma-
chine translation and automatic speech recognition.

William Byrne (S’79–M’93) was born in New York,
NY. He received the B.S. degree in electrical engi-
neering from Cornell University, Ithaca, NY, in 1982
and the Ph.D. degree in electrical engineering from
the University of Maryland, College Park, in 1993.

He is currently a Research Associate Professor
in the Center for Language and Speech Processing
and the Department of Electrical Engineering at
The Johns Hopkins University, Baltimore, MD. His
research is in the statistical processing of speech and
language.


