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ABSTRACT

Lattice segmentation procedures are used to spot possible recogni-
tion errors in first-pass recognition hypotheses produced by a large
vocabulary continuous speech recognition system. This approach
is analyzed in terms of its ability to reliably identify, andprovide
good alternatives for, incorrectly hypothesized words. A proce-
dure is described to train and apply Support Vector Machinesto
strengthen the first pass system where it was found to be weak,
resulting in small but statistically significant recognition improve-
ments on a large test set of conversational speech.

1. INTRODUCTION

Acoustic Code-breaking is a divide-and-conquer approach to Au-
tomatic Speech Recognition (ASR). The process starts by analyz-
ing word lattices generated by a good ASR system to pick out
‘regions of uncertainty’. These are portions of the lattice(sub-
lattices) where the first-pass ASR system is less than certain about
the words in its primary hypothesis (also referred to as the MAP
lattice path). Moreover, these sublattices contain words and phrases
which can be considered as likely alternatives to the primary hy-
pothesis. The original acoustic model (or language model) is weak
over these regions in that the system was unable to pick a clear
winner from among the competing hypotheses; these sub-lattices
essentially define sub-problems that remain after the first recog-
nition pass. The idea behind acoustic code-breaking is to attack
these problems using special-purpose models trained specifically
to find the truth in these sets of competing hypotheses.

This approach is motivated by several considerations. Even
powerful discriminative training procedures such as MMI donot
address all errors uniformly well. It is possible, for example, for
MMI to improve the overall word error rate even while perfor-
mance over some individual error-types actually degrades [1, 2].
Code-breaking is a way to avoid that problem (see also [3]).

Another consideration is that different word recognition prob-
lems require different types of decisions. The first-pass acoustic
model has littlea priori knowledge about the speech to be recog-
nized, and so it must be capable of choosing between (say) ‘A’and
‘8’ and also ‘A’ and ‘J’. Code-breaking makes it possible to use a
specialized decoder capable of distinguishing between ‘A’and ‘J’
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without having to distinguish between ‘A’ and ‘8’. Without the re-
finement of the first-pass hypotheses, such a simple choice would
never occur in large vocabulary continuous speech recognition.

Specialized HMMs can be trained to solve the problems iden-
tified by code-breaking [4], however the approach can also employ
novel classifiers, such as Support Vector Machines (SVMs) [5, 6,
7, 8], to resolve acoustic confusion identified by the first-pass de-
coder.

SVMs are essentially binary pattern classifiers, and to use them
in this context, we restrict the regions of confusion to be word
pairs, calledconfusion pairs. This approach of using SVMs has
been demonstrated and validated on small vocabulary, continuous
speech recognition tasks [9, 10]. In this paper we demonstrate the
code-breaking is a general approach through which powerfulbut
simple classifiers can be incorporated into large vocabulary speech
recognition systems.

All the steps in code-breaking become more challenging in a
large vocabulary recognition task. If we select a confusionpair to
be ‘fixed’, we need to be fairly confident that (a) the MAP hypoth-
esis is actually wrong in that pair, and that (b) the other hypothesis
is actually the truth. While we have found that both these issues are
manageable in small vocabulary tasks, in large vocabulary tasks,
we face sparsity issues due to the diversity of word confusions
that arise; it may be difficult to ensure the presence of the truth
in a confusion pair. We will study the degree to which we can
ensure (a) and (b). To demonstrate that the overall approachis fea-
sible, we will show that we can employ SVMs to reduce error rates
within the confusion pairs so as to produce statistically significant
improvements relative to the baseline MMI ASR system.

2. UNSUPERVISED IDENTIFICATION OF ASR
SUBPROBLEMS VIA LATTICE PINCHING

Lattice segmentation converts a first-pass lattice into a sequence
of smaller sub-lattices through a Levenshtein alignment ofthe lat-
tice to a reference path [11]. Here, test set lattices (Fig. 1, a) are
aligned to the primary hypothesis so that word sequences from the
lattice are aligned with words in the primary hypothesis (Fig. 1, b).
In Period-1 lattice cutting [11], all competing paths are collapsed
with respect to a single word in the reference path. This produces
segment sets, which are groups of substrings from the lattice iden-
tified as alternatives to words in the primary hypothesis (Fig. 1, c).
Note that no lattice paths are discarded yet. In fact, new lattice
paths are usually introduced; the oracle Lattice Error Rate(LER)
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Fig. 1. Lattice Segmentation.a: First-pass lattice with MAP path
in bold; b: Alignment of the lattice to the MAP path under the
Levenshtein distance; the link labels give the word hypothesis, seg-
ment index, edit operation, and its alignment cost);c: Collapsed
segment sets;d: Refined Search Space consisting of binary seg-
ment sets. Word hypotheses are tagged so specialized modelscan
be used in lattice rescoring.e: The truth.

of the lattice in Fig. 1, c is typically much lower than that ofthe
original lattice in Fig. 1, a.

Some of the segment sets can contain NULL links. These are
contributed by lattice paths that are shorter than the reference. The
presence of a NULL requires answering the question “Should the
word in the primary hypothesis be deleted?”. Since the MAP hy-
pothesis could easily contain a wrongly inserted word or phrase,
this is clearly a problem of interest and specialized detectors could
be built to attack it. But in this paper we ignore this problem. We
simply discard the NULL links knowing an increase in the LER
will result.

While the segment sets are defined by alignment under the
Levenshtein distance, the joint acoustic and language model scores
in the initial lattice are also preserved so that posterior distributions
can be defined over the segment sets. This allows us to prune the
segment sets to finally obtain confusion pairs (Fig. 1, d).

This process of alignment, segmentation, and pruning defines
the sub-problems that will be attacked in code-breaking. Were-
fer to the overall process aslattice pinching and we now analyze
how well it performs in (a) identifying weaknesses in the primary
hypothesis and (b) providing useful alternatives. We beginby de-
scribing our large vocabulary ASR task.

3. EFFECTIVENSS OF LATTICE PINCHING

We evaluate our approach in the MALACH spontaneous Czech
conversational domain [12]. The system consists of speakerinde-
pendent continuous mixture density, tied state, cross-word, gender-
independent, triphone HMMs trained with HTK using 40 hours of
transcribed speech (24065 utterances). The speech was parameter-

Pruning Avg. # Hyps. / Segment Sets
Threshold LER Segment Set Types Tokens

0.00 27.3 11.65 94029 1393099
0.05 35.3 2.82 49837 212852
0.10 37.9 2.35 35278 134252
0.20 41.1 2.06 17132 63267
0.30 43.2 2.00 7288 26913
0.40 44.7 2.00 2249 7930
0.50 45.6 - 0 0

Table 1. Lattice Pinching and LER. The average number of hy-
potheses per segment set, number of distinct segment sets, and to-
tal number of segment sets after posterior-based pruning. Thresh-
old 0.0 corresponds to Fig. 1 c with NULL hypotheses discarded.

ized into 39-dimensional, MFCC coefficients, with delta andac-
celeration coefficients. The AT&T Large Vocabulary Decoderwas
used to generate lattices over the training and test sets with a bi-
gram language model based on a 83000 word vocabulary. Lattice-
based MMI [13, 1] was then performed. The test set consisted of
approx. 8400 utterances spoken by ten held-out speakers (approx.
25 hours of speech). Unsupervised MLLR transforms for each of
the test-set speakers were estimated on a 1000 utterance subset of
the test set. The baseline system produced a test set lattices with
WER of 45.6% and 22.3% LER.

We first analyze the change in oracle Lattice Error Rate that
results from pinching the test set lattices. Table 1 shows that dis-
carding the NULL hypotheses from the segmented lattices, with-
out any pruning, increases the LER to 27.3%. If we were to pro-
cess these lattices with special-purpose classifiers, these classifiers
would need to be able to distinguish between 11.65 hypotheses
on average, and if these classifiers were to perform perfectly, they
would lower the WER from 45.6% to 27.3%. Since we wish to ap-
ply binary classifiers, the analysis at the 0.3 pruning threshold of
0.3 is relevant, since ‘on average’ pinching produces binary con-
fusion pairs. While the best performance that can be obtained is
a WER of 43.2%, we stress that this is improvement over a well-
trained large vocabulary ASR system on a very difficult test set.

We consider only those confusion pairs that occur in the test
data at least 100 times. This is not a necessary restriction and it
does further limit our potential improvement, but it simplifies our
analysis in that there are enough instances of each pair to reliably
measure recognition performance over each of them. Referring
to Figure 1 d, only these frequently occurring confusion pairs are
retained, and all others are pruned back to the primary hypothesis.

To further analyze the confusion pairs, we Levenshtein-align
the pinched lattices (Fig 1 d) to the truth (Fig 1 e). We first count
the number of Confusion Pair Errors (CPERR), which are confu-
sion pairs that don’t contain the truth. For example, in Fig.1 d,
(A:17, J:17) is classified as CPERR since it does not contain the
true word ‘K’; the other sets are classified as Confusion PairOracle
Correct (CPOC). While it is desirable to produce as few CPERR
sets as possible, those CPERR instances that do occur can be ig-
nored. These are ‘lost causes’, where lattice pinching failed to pro-
vide a good alternative and further processing can pick randomly
from the confusion pair without any meaningful effect on theover-
all WER. Of course, if a set can be guessed to be CPERR, there is
the opportunity to add hypotheses, perhaps to fix OOV problems.

The CPOC segments are those which we are interested in.
Within the CPOC segments we can distinguish those in which the
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Pruning #CPOC/ #MAPERR/ Segment Sets
Threshold #CPERR #MAPCOR Types Tokens

0.00 14.30 0.24 22 7324
0.05 4.7 0.64 26 8022
0.10 3.3 0.92 26 6860
0.20 3.2 1.17 17 3831
0.30 4.2 1.15 6 1405
0.40 11.0 1.04 2 337
0.50 - - 0 0

Table 2. Ratio of #CPOC/#CPERR segments and
#MAPERR/#MAPCOR segments for the confusion pairs ob-
served at least 100 times in the 25 hour test set.

MAP path agrees with the oracle path (MAPCOR) and those in
which the MAP path is in error (MAPERR). In Fig. 1, d the pair
(V:5, B:5) is classified as MAPERR, and the pairs (OH:23, 4:23)
and (A:7, 8:7) are MAPCOR;both these sets are CPOC.

We further process the pinched lattices constructed from the
frequently occurring confusion pairs. We renormalize these lat-
tices to define the posterior distribution over these binaryconfu-
sion pairs, and again apply a posterior-based pruning to these in-
stances of the confusion pairs. The results are as reported in Ta-
ble 2. At a pruning threshold of 0.4, the surviving confusionpairs
are high quality: the CPERR pairs occur far less frequently than
CPOC pairs; and within these the the MAPERR count is about
equal to the MAPCOR count, so about half the MAP hypotheses
are incorrect. Unfortunately, there are only two distinct confusion
pairs and pruning eliminates all but 337 instances of them. In the
subsequent experiments, we prune at a threshold of 0.1. At this
level, we still have three times as many CPOC pairs as CPOERR,
the system is still making errors roughly half the time (MAPERR
≈ MAPCOR), and we have a diverse test set of 6860 observations
of 26 distinct confusion pairs. While the 0.1 threshold value re-
ported here was chosen in a supervised fashion, we subsequently
verified that 0.1 is also the optimal threshold found by splitting the
test set by speakers and using one half as a held-out set and the
other half as the test set. We conclude that this threshold can be
determined robustly as part of the modeling process.

Lattice pinching can also be used to identify weaknesses in the
underlying language model. For example if a confusion pair con-
tains homonyms, acoustic-phonetic information cannot easily be
used to distinguish them. This homonym problem is very severe
in Czech due to the mixing of standard and colloquial Czech in
conversational speech [12], as with the Czech words ‘BYLI’ and
‘BYLY’, both pronouncedB I L I. It is possible to train spe-
cialized language models for such homonym confusion pairs,but
we focus here on acoustic code-breaking experiments. Restrict-
ing ourselves to non-homonym confusion pairs further reduces the
number of confusion pairs to 21 with 2991 total observations.

To recap the selection of test set confusion pairs, we prune
from the collapsed segment sets any path whose posterior prob-
ability is less than 0.10. After pruning, we keep only confusion
pairs: any confusion set with more than two hypotheses is pruned
back to the primary hypothesis. We then restrict the confusion
pairs to those that occur atleast 100 times. Finally, homonym con-
fusion pairs are also pruned back to the primary hypothesis.

The relative increase in the number of MAPERRs as the thresh-
old increases strongly suggests that code-breaking shouldbe done
so that the baseline posterior distribution over the confusion pairs

is considered in the decoding process. We have developed simple
voting procedures for this [9, 10], to be described in Sec. 4.3.

4. CODE-BREAKING

4.1. Acoustic HMMs for Confusion Pairs

We begin by training special purpose HMMs for the words in the
confusion pairs. A set of multiple Gaussian mixture monophone
HMMs are trained over the acoustic training set, and these mod-
els are also used to align the training set. Whole-word acoustic
models for the words in confusion pairs are initialized withthese
monophone models and they are then then reestimated using Baum
Welch over word segments extracted from the aligned training set.

We next clone these whole-word models for the confusion
pairs, e.g. the model for the word ‘A’ is replicated so that A:17
and A:7 are two different whole-word HMMs. To train the mod-
els for the confusion pair (A:7, 8:7), an acoustic training subset
is created by extracting all the acoustic segments for ‘A’ and ‘8’
from the training data. MMI is then used to further train the mod-
els A:7 and 8:7 over this training subset. This process is repeated
for all of the confusion pairs, and in this way, the models arespe-
cialized to discriminate between the words in the confusionpairs.
Throughout all this we keep track of pronunciation variation. For
example, the word ‘TAK’ has pronunciationsT A K andT A G,
and the word ‘PAK’ has only the pronunciationP A K. Models
are trained for all three instances, andT A K vs. P A K andT A
G vs. P A K would be considered as two distinct confusion pairs.

4.2. Acoustic SVMs for Confusion Pairs

We now have all that is needed to train acoustic SVMs for the bi-
nary confusion pairs. We use the score-space approach developed
by Smith and Gales [14, 9, 10]. Statistics derived from the like-
lihood of speech segments under the HMMs are used to convert
a variable-length sequence into a static fixed-dimensionalrepre-
sentation which can be used in SVM training and classification;
the dimension is derived from the number of parameters in each
HMM. We do not review this approach, other than to stress thatthe
use of whole-word models allows us to fix the score space for ev-
ery instance of each confusion pair. If we were to derive the score
space from triphones, say, the score space would then dependon
context within which the word pair occurs. This may in fact be
desirable, but it would greatly complicate the modeling approach.

SVMs were trained using theGiniSVM toolkit [15] for 21
non-homonym confusion pairs. The MMI trained word HMMs
were used to generate mean and likelihood-ratio scores. AllSVMs
were trained in 20% of the most informative dimensions (chosen
by a Fisher-like criterion [14]). We noticed that performace of the
SVMs was similar for a range of dimensionalities of the score-
space used (15% to 25%). We used a tanh kernel and a global
SVM trade-off parameter of 1.0. More details of the SVM training
procedure can be found in Venkataramaniet al. [9].

4.3. SVM-MAP Hypothesis Combination

For each of the 21 confusion pairs, Figure 2 reports performance
of the baseline HMM system, the SVM decoders, and a hybrid
decoder combining the two. The baseline performance over each
confusion pair is the left-most of each of the three bars. Thede-
cision is made simply by picking the most likely alternativeunder
the lattice posterior; this likelihood is based on the triphone HMM
acoustic score, with MLLR, and the bigram language model. An
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Fig. 2. Error counts over individual confusion pairs.

error occurs when picking the wrong word relative to the Leven-
shtein alignment of the pinched lattice to the truth; e.g. inFig. 1 d,
picking V:5 would count as an error.

For each confusion pair instance, the appropriate discrimina-
tively trained whole-word was used to create score-space features
for use in classification by the SVM trained for that pair. Theper-
formance over each of the 21 confusion pairs is given in the center
bars of the plots in Fig. 2. Performance relative to the MAP base-
line is mixed; there are not consistent improvements.

To combine the SVM and MAP decisions, a posterior distri-
bution over the SVM decisions was estimated by logistic regres-
sion [10]. This associates a confidence (estimated likelihood of
being correct) with each SVM choice. For a particular instance of
a confusion pair with words(w1, w2), let ph(w) be the MAP pos-
terior over the pinched lattices, andps(w) be the SVM confidence
in each decision. A simple linear interpolation

pλ(wi) = λph(wi) + (1 − λ)ps(wi) for 0 ≤ λ ≤ 1
gives a combined likelihood over the word pair. Withλ = 0.5,
the performance over the 21 pairs by this SVM-MAP combina-
tion system is given in the third of the bars in Fig. 2. Under this
combination, the error count decreases in 18 of the 21 pairs.

The influence of these reductions on the overall WER over
the complete 25 test set is necessarily limited, for the reasons
already discussed. The main reason is that the 2991 words in
the code-breaking test set are only a small portion of the com-
plete 25 hour test set. Under the MAP-SVM combination sys-
tem, the baseline MAP WER is reduced from 45.6% to 45.5%.
However small, these gains are statistically significant and stable
with respect toλ: we obtained this performance improvement for
λ = 0.4, 0.5, 0.6, and, 0.7, and in all instances the significance
test p-values [16] were less than 0.001.

5. CONCLUSIONS

We have presented a general modeling approach for incorporating
special purpose classifiers into a large vocabulary recognition sys-
tem. Possible errors in the first-pass recognition hypotheses are
identified by lattice pinching, and specialized decoders are trained
and applied to fix these errors. We have shown that SVM binary
classifiers can in this way be gainfully added to a large vocabulary
ASR system. We constructed our experiments so that the poten-
tial gains are modest, but this does not reflect any insurmountable

limitation in the approach. Expanding the code-breaking test set,
perhaps by more permissive pruning or acoustic clustering of con-
fusion sets, will provide opportunity for greater improvements.
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