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Abstract
This paper addresses the influence of audio segmentation and
segment clustering on automatic transcription accuracy for large
spoken archives. The work forms part of the ongoing MALACH
project, which is developing advanced techniques for support-
ing access to the world’s largest digital archive of video oral his-
tories collected in many languages from over 52000 survivors
and witnesses of the Holocaust. We present several audio-only
and audio-visual segmentation schemes, including two novel
schemes: the first is iterative and audio-only, the second uses
audio-visual synchrony. Unlike most previous work, we eval-
uate these schemes in terms of their impact upon recognition
accuracy. Results on English interviews show the automatic
segmentation schemes give performance comparable to (exhor-
bitantly expensive and impractically lengthy) manual segmen-
tation when using a single pass decoding strategy based on
speaker-independent models. However, when using a multiple
pass decoding strategy with adaptation, results are sensitive to
both initial audio segmentation and the scheme for clustering
segments prior to adaptation: the combination of our best auto-
matic segmentation and clustering scheme has an error rate 8%
worse (relative) to manual audio segmentation and clustering
due to the occurrence of “speaker-impure” segments.

1. Introduction
There has been considerable success in creating technologies
and infrastructures to enable access to digital archives in re-
cent years, including projects by Informedia [3] and the Na-
tional Gallery of the Spoken Word (NGSW) [7]. However, au-
tomatic technologies for search and exploration in spoken ma-
terials still have relatively limited capabilities, capabilities that
must be dramatically enhanced if the full potential of digital
archiving is to be realized. The ongoing MALACH project [6]
aims to achieve a quantum leap in our ability to access the
contents of large, multilingual, spoken archives by advancing
the state of the art in automated speech recognition (ASR), in-
formation retrieval (IR) and other component technologies, by
utilizing the world’s largest digital archive of video oral histo-
ries collected by VHF1. The VHF corpus is an interesting and
highly challenging digital archive from a research perspective:
unique characteristics of the corpus include unconstrained natu-
ral speech, massive quantities of multilingual audio (thousands
of hours) and an extensive set of labeled training data.

Efficient access to digital archives requires descriptions of
their contents, through some combination of human effort and
automation. Given the volumes of information involved and the
cost of human labour, we are investigating techniques to au-
tomate as much of this process as possible without degrading

1VHF, or The Survivors of the Shoah Visual History Foundation.
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rmance below that achievable using humans throughout.
h and language technologies form the basis for doing so;
specifically, ASR transcripts will be used in all text pro-
g steps since word-level manual transcription would be
bitantly expensive. The automatic transcripts, annotated
confidence scores, boundaries, emotion, etc., will be used
bsequent classification into concept and topic metadata.
ur current large vocabulary speech recognition system re-

s a segmentation of audio prior to recognition: this is a pre-
site for practical, rather than theoretical, reasons. Firstly,
coustic models are not robust to the often high level of
round noise during interviews, which can cause high in-
n errors; automatic identification and (successful) removal
n-speech segments prior to decoding improves perfor-
e. Secondly, the decoder benefits from segmentation in
ays: short segments reduce per-segment computational

for our current decoder implementation and eliminating
peech segments reduces the overall computational load.
ly, speaker labelling of segments allows adaptation to be
rmed on speaker-coherent clusters, which may further im-
performance. However, obtaining manual segmentation
io into coherent speaker turns prior to recognition is time-
ming and expensive2. Therefore this paper discusses our
ess towards identifying automatic segmentation schemes

equally good end-result recognition performance. This
a trivial problem: use of imperfect automatic rather than

al segmentations potentially impacts the recognizer in sev-
ays. Segments may not be linguistically coherent, poten-
hindering the language model3. Imperfect silence removal
ead to insertion errors in retained silence regions and dele-
rrors in incorrectly removed regions. Further, automatic
entation raises the challenge of later automatically group-
possibly speaker-impure) segments into speaker-specific
rs prior to adaptation [4]; poor automatic groupings may
t gains from speaker adaptation. Automatic schemes for
segmentation4 and for segment clustering prior to adapta-

hus need careful evaluation to ensure that performance is
graded below human-annotated performance.
he paper is organized as follows. Section 2 gives an
iew of the VHF English corpus and Section 3 reviews
s ASR system. Sections 4 and 5 discuss schemes for au-
ing the segmentation and for clustering segments for adap-
. Section 6 presents experimental results. The paper ends
onclusions and possible future work.

hough much less so than the exhorbitant costs of manual word
ranscription.
ince short-span (eg. trigram) language models are used in our cur-
stem, this may not be a serious problem.

ee [11] for a survey of audio segmentation schemes based on au-
ntent analysis.



2. VHF English Corpus
VHF was created to record the firsthand accounts of Holocaust
survivors, liberators, rescuers and witnesses and to disseminate
that information to future generations [6]. This section gives a
brief overview of this corpus, comprising a total 180 terabytes
of MPEG1 video; see also [9]. Approximately 25000 of the col-
lected testimonies are in English; the average duration of each
interview is 2.5 hours. Recording conditions varied widely from
quiet to noisy conditions such as background conversations or
airplane, wind or highway noise. Human transcribers require an
average 8 to 12 hours to transcribe an hour of speech from the
English interviews, slightly higher than reports for transcribing
spontaneous speech [10], illustrating the difficult speech seen
in VHF and emphasising the reasons why at least partially au-
tomatic methods will be important if the entire corpus is to be
catalogued. The difficulty for humans lies in understanding the
unfamiliar names, places, multiple languages encountered dur-
ing a single interview, age-related coarticulations, and heavily
accented speech.

3. IBM Speech Recognition System
The English ASR system uses acoustic models constructed us-
ing 65 hours of English interviews from 260 speakers in the
VHF corpus. The compressed audio signal from the MPEG1
videos is down-sampled to 16KHz; 24-dimensional Mel fre-
quency cepstral coefficients (MFCC) and 60-dimensional trans-
formed features [9] are then extracted. The 60000 word lex-
icon, built from existing cataloging information and study of
frequency of occurrence of uncommon words, has good cov-
erage of names and places likely to be mentioned during in-
terviews. The language model was built by interpolating the
1.7M words from the MALACH corpus with data from Broad-
cast News (50M words) and Switchboard (3M words) corpora.

4. Audio Segmentation
Four schemes for automatic segmentation are investigated here.
Each interview is divided into several 30-minute tapes. Tran-
scribers have annotated these with speaker turns and organized
them into shorter segments. We assume manual segmentation
represents a “gold standard”, ie. a first recognition pass using
these segments will yield good results. Our goal is then to iden-
tify an automatic segmentation scheme giving (at least) compa-
rable first-pass transcription accuracy.

4.1. Speech vs Non-speech Segmentation

We adopt the broad approach of [5], described only briefly here.
We train an HMM-based segmentation procedure with two
models, one for speech and one for non-speech. Each model
is a five-state, left-to-right HMM with no skip states. The out-
put distributions are tied across all states in each HMM, and are
modeled with a mixture of sixteen diagonal-covariance Gaus-
sian densities. The segmentation is performed using a log-space
Viterbi decoding algorithm that can operate on very long audio.
A segment-insertion penalty is used during decoding to control
the number and duration of the hypothesized speech segments.
After decoding, hypothesized segments are extended by an ad-
ditional 20 frames to capture any low-energy, unvoiced seg-
ments at the boundaries and to provide sufficient acoustic con-
text for the recognizer. The audio features used incorporate in-
formation about degree of voicing (computed in a 25-ms frame
using a normalized auto-correlation function computed on the
mean-removed data [5]) and frame-level log-energy, computed
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Hanning window. To incorporate temporal context, ��
s are spliced together and projected to two dimensions via
A+MLLT transformation [5].

BIC Segmentation

egmentation is one example of a statistical model-based
entation scheme. In these schemes, a sliding window(s)
ach [2] is used where the window size is set equal to the
bound mentioned above. At a given time index t, three
ws are defined: two that are contiguous and have a com-
oundary at t, and one that encompasses both of these (i.e.
bination of the two). Each window is generally modeled

a multivariate Gaussian density with maximum likelihood
eters. At t, a maximum likelihood boundary decision is
[2] based on the log likelihood ratio comparing the max-
alue of the likelihood with the two window model to that
one window model. However, it has proven more effec-

o compare the penalized log likelihoods [1], where added
log likelihood is a term that penalizes the model order. By
priately defining this penalty, one can generate decisions
on the Akaike Information Criterion (AIC), the Bayesian
ation Criterion (BIC), the Consistent AIC (CAIC), the
um Description Length (MDL) principle, and the Mini-

Message Length (MML) principle. It has been found that
MDL, and CAIC give the best results and with proper tun-
l three produce comparable results (Cettolo and Federico
. This work uses BIC as described in [1]; once segmented,
e detectors (for example, simple Gaussian Mixture Mod-
an be used to identify purely silent segments for removal.

Audio-Visual Synchrony Segmentation

present corpus which comprises interviews of people, we
the visual part of an interview is predominantly focused

e interviewee. Given this observation, we hypothesize
sing the notion of audio-visual synchrony [8] we can dis-
uate between interviewee speech and interviewer speech.

fically, the synchrony between audio and video channels
e higher when the interviewee speaks. Based on a pre-
study of definitions and implementations of audio-visual
rony measures [8], we adopt a scheme that models audio
ideo features as locally Gaussian distributions [8]. In or-
search for synchronous segments, we observe the audio

ideo frames in a sliding window of 2 seconds (with a shift
seconds) by computing the mutual information between

pixel in the video and the corresponding audio frame (pa-
erized by 24-dim MFCC coefficients) by modeling them
both individual and joint Gaussian distributions. To get

(a) (b)

Figure 1: Mutual Information Faces

chrony score from such a mutual information image, we
ute the ratio between the mutual information of the face
n and the average mutual information across the entire im-
ntuitively, the higher this score the greater the synchrony
en audio and video. Figure 1 shows example Mutual In-



formation images, where brighter pixels correspond to higher
mutual information. Note that face regions are successfully seg-
mented from the background. Our experiments indicate that the
face location information from the face detector is error-prone
and varies considerably across the video. Hence, rather than
rely on the face location estimates from the face detector, we
compute a ratio between the best m�m pixel region in the mu-
tual information plot and the background, where m is chosen
empirically from a validation set. The search for the best region
begins at the top left pixel and proceeds through the entire im-
age in raster order. To speed up the search, we only consider
regions whose center pixel is at least 80% of the maximum mu-
tual information value in the plot. We obtain a synchrony score
every 0.5 seconds. This score profile is then used to segment
the audio by thresholding the score. In order to make the exper-
iments comparable, we use synchrony score threshold values
such that final number of segments is comparable to the other
techniques investigated.

This approach has a practical limitation in silence regions,
where a mutual information score between audio and video can-
not be computed reliably because facial movements are limited
and there is no speech audio. One simple solution incorpo-
rates additional silence information from audio-only schemes,
e.g., the Speech vs Non-speech Segmentation scheme above.

4.4. Iterative Segmentation Scheme

Iterative segmentation begins with some initial set of boundary
points, eg. from any scheme above, and then applies a refine-
ment step wherein the defined segments are partitioned into a
set of N�i� (i is the iteration number) subsets. The partition is
the result of a bottom up clustering. For every segment j, a diag-
onal covariance GMM model M�j� is built by adapting a back-
ground model to the segment data via MAP. The same is done
for every pair of segments j,k producing M�j� k�. Let s�j� be
the score of the data for segment j w.r.t. M�j� and s�j� k� the
score of the data for segments j and k w.r.t. M�j� k�. Then
the bottom up clustering proceeds by joining the two segments
j,k that maximize s�j� k� � s�j�s�k� until N�i� sets remain
or the criterion max s�j� k�� s�j�s�k� falls below a threshold.
Then models are adapted to the N�i� sets. Subsequently, for
each time index and each model, a likelihood score is computed
over a fading window that captures the neighboring data. Seg-
mentation chooses the label maximizing the likelihood for each
frame.

5. Segment Clustering for Adaptation

Adaptation is unsupervised and performed per 30 minute tape;
our goal is to produce high accuracy transcripts at this stage
since we will ultimately perform a further decoding pass us-
ing MLLR adaptation. We adopt as our target the performance
given when adaptation is performed on two data clusters in-
dependently, one corresponding to interviewer speech and one
corresponding to interviewee speech. We use two transforms
for the following reasons. Firstly, while we find two trans-
forms improve significantly over one transform, no more than
two transforms are used for computational efficiency (impor-
tant since ultimately thousands of hours of data must be pro-
cessed) and because gains from multiple transforms are rela-
tively small. Secondly, because background channel conditions
are fairly stable throughout each 30 minute segment and there-
fore our primary goal is to adapt to speaker properties (rather
than some combination of speaker and channel). We seek an
automatic scheme yielding (at least) comparable performance
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sing a Kullback-Leibler divergence metric. The two clus-
ge gives the clusters needed for adaptation.

6. Experimental Results
Data Sets and Usage

est set comprises � different interviews, each of duration
st ��� hours and stored as 30 minute “tapes”, for a total
rs of data. We select one tape per interview as adapta-
ata for the whole interview, together with the transcript
first-pass speaker-independent (SI) system decoding of
rresponding audio segmentation: specifically, we adapt

aker-adaptive-training (SAT) system on a per-interview
using unsupervised adaptation with one global feature-
MLLR transform estimated per cluster of segments. Re-

are assessed using Word Error Rate (WER).

Audio Segmentation Results

1 shows the WER for each interview for the 4 differ-
gmentation schemes (“Speech vs Non-speech”, “BIC”,
” or iterative, “AV” or audio-visual), compared with the
s from human segmentation (“Human”). None of these
es remove silence segments prior to this first pass of de-

g. The Speech vs Non-speech segmentation results are
isingly good, even a little better than those from the hu-
segmentation. We hypothesize this may be because the
n transcribed segments tend to be shorter than the auto-
ally produced segments: since the goal of human tran-
rs was not to segment the data per se, but rather to produce
ate transcriptions, and given that the data often requires
ted plays before it can be transcribed, transcribers often
r to use short segments. Thus the “human” segmentation,
marking speaker turns accurately, is not always consistent
ecting natural semantic boundaries, though it is the best

only) available starting point for assessing recognition ac-
y. However, it is possible that short segments break the
ntic phrases or sentences and lose context for acoustic and
age modeling more frequently than occurs in the Speech
n-speech segmentation. We observe the BIC, I-seg and
hemes also tend to produce shorter segments on average.

Speaker
Technique 1 2 3 4 5

Human 30.6 60.6 47.3 56.3 49.2
ch vs Non-speech 29.2 59.5 46.3 56.1 49.1

BIC 38.7 64.2 50.6 57.9 52.4
I-seg 38.0 61.7 46.3 58.9 53.5
AV 34.9 62.0 46.7 59.0 52.5

Table 1: Pass 1 Decoding WERs

ne reason to perform segmentation prior to recognition is
ove unnecessary silence segments, which may cause in-

n errors. Table 2 shows the results of removing segments
d as silence by the Speech vs Non-speech segmentation
e before recognition; the effect is only marginally benefi-
his trend is unlikely to hold across the entire VHF corpus,
background “silence” is occasionally very noisy.

he reader will observe that an automatic scheme might be ex-
to beat this baseline, rather than simply match it, if automati-

enerated clusters better reflect ambient channel conditions: many
r speaker adaptation techniques adapt to some combination of
r and channel, rather than speaker alone.



Speaker
Technique 1 2 3 4 5

No Sil 28.9 59.5 46.3 56.2 49.0
With Sil 29.2 59.5 46.3 56.1 49.1

Table 2: Silent Segment Removal WERs

6.3. Segment Clustering Results

Our baseline is the performance obtainable using manual au-
dio segmentation plus a segment clustering based on human-
assigned speaker labels prior to adaptation. In contrast to these
manually-marked speaker turns and labels, automatic segmen-
tation schemes yield “speaker-impure” segments eg. the best-
performing scheme (Speech vs. Non-speech segmentation)
gives 2422 segments of which 65 are speaker-mixed segments
(2.5%). Of the speaker-mixed cells, there is an average mix of
14.2% vs 85.8% between speakers. This speaker impurity may
reduce the gains expected from clustering based on speaker-
id. Our experiments are therefore of two types. The first set
of experiments examines whether clustering segments based on
human-assigned speaker labels (“Human Segment Ids”, i.e. the
“true” speaker clustering) is any better (or worse) than using
the bottom-up clustering scheme (“BUC”) or a random cluster-
ing scheme (“Random Speaker Ids”). (In part this experiment
investigates whether we will benefit from true speaker adapta-
tion rather than to combinations of speaker and environment.)
For these first experiments we start from the reference human
segmentations. The results of Table 3 show best performance is
obtained when adaptation uses “true” speaker-based clustering
of segments, and as expected performance exceeds that achiev-
able using the “Speaker-Independent Only” baseline models (no
adaptation) and using a single cluster (“Single Transform”) for
adaptation.

Speaker
Technique 1 2 3 4 5

Speaker-Independent Only 26.4 61.3 44.9 57.6 79.2
Single Transform 23.9 49.2 41.4 44.9 71.4

Human Speaker Ids 22.0 47.3 37.2 44.6 67.6
BUC 22.9 50.2 40.6 46.3 72.4

Random Speaker Ids 28.3 47.9 43.5 57.9 71.0

Table 3: Pass 2 Decoding WERs (Human Segmentation)

In practice we often start from automatically-produced, of-
ten speaker-mixed segments, precluding a “true” speaker-based
clustering of segments. Further experiments investigate whether
this impacts performance achievable using existing automatic
clustering schemes (eg. “BUC”). Two comparisons are pro-
vided: a clustering of segments based on the dominant speaker
using information from the human-assigned speaker ids (“Hu-
man Speaker Ids”) and random assignment (“Random Speaker
Ids”). Table 4 shows that, when starting from speaker-mixed
segments, the clustering scheme has relatively little effect on
performance. Performance is below that obtained when start-
ing from “pure” speaker segments, particularly when clustering
uses the true speaker ids. Although performance exceeds that of
“Speaker-Independent Only” baseline models (no adaptation) it
is not significantly better than using a single cluster (“Single
Transform”) for adaptation.

7. Conclusions
Results show that for a single recognition pass, automatic
schemes with silence removal give segmentation performance
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Speaker
Technique 1 2 3 4 5

ker-Independent Only 27.2 60.1 45.6 57.5 79.2
Single Transform 24.4 49.5 41.6 47.9 74.7
uman Speaker Ids 23.9 49.5 41.2 47.9 73.8

BUC 23.9 49.1 41.4 48.4 74.0
andom Speaker Ids 24.1 49.6 41.6 48.5 74.9

le 4: Pass 2 Decoding WERs (Automatic Segmentation)

od (or even better) than expensive manual segmentation.
ver, for multiple pass recognition incorporating speaker
ation, the overall best performance is obtained when adap-

uses pure speaker segments and labels rather than the
-speaker segments typically derived from an automatic
e (as we might hope). Preliminary analysis suggests this
ause the limited interviewer speech (typically less than
even including crosstalk) is dominated by interviewee

h in the resulting clusters. This impact upon interviewer
ription accuracy would pose a serious problem for cat-
g applications since many spoken archives are recorded
form of interviews, for which interviewer promptings

t least as important as interviewee responses for subse-
information access. Future work must therefore develop

eme for (a) producing speaker-pure segments or pruning
er-impure segments and then (b) grouping those segments
peaker-pure clusters prior to adaptation. This could be
directly or via an iterative scheme that refines the initial
entation based on subsequent speaker information. Fu-
ork will also incorporate topic boundaries derived using

IR techniques to refine initial audio segmentations.
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