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ABSTRACT

Digital archives have emerged as the pre-eminent method for
capturing the human experience. Before such archives can be used
efficiently, their contents must be described. The NSF-funded
MALACH project aims to provide improved access to large spo-
ken archives by advancing the state-of-the-art in automated speech
recognition (ASR), Information Retrieval (IR) and related tech-
nologies [1, 2] for multiple languages. This paper describes the
ASR research for the English speech in the MALACH corpus. The
MALACH corpus consists of unconstrained, natural speech filled
with disfluencies, heavy accents, age-related coarticualtions, un-
cued speaker and language switching, and emotional speech col-
lected in the form of interviews from over 52000 speakers in 32
languages. In this paper, we describe this new testbed for develop-
ing speech recognition algorithms and report on the performance
of well-known techniques for building better acoustic models for
the speaking styles seen in this corpus. The best English ASR sys-
tem to date has a word error rate of 43.8% on this corpus.

1. INTRODUCTION

With recent advances in information technology, digital archiving
has emerged as an important and practical method for capturing the
human experience. Before archives can be used efficiently, their
contents must first be described, through some combination of hu-
man effort and automation. Automatic technologies for search and
exploration in spoken materials presently have relatively limited
capabilities; capabilities that must be dramatically enhanced if the
full potential of digital archiving is to be realized. The MALACH
project seeks to make a quantum leap in the ability to access the
contents of large, multilingual, spoken archives by advancing the
state of the art in automated speech recognition (ASR), Informa-
tion Retrieval (IR) and other component technologies, by utilizing
the world’s largest digital archive of video oral histories collected
by VHF1. The unique characteristics of this corpus, including un-
constrained natural speech, massive quantities of multilingual au-
dio and an extensive set of labeled training data, serve to accom-
plish this goal. In the past, there have been several research ef-
forts, such as, Informedia [4], and the National Gallery of the Spo-
ken Word (NGSW)[5], that have focussed on the creation of tech-
nologies and infrastructures to improve access to digital archives.
However, none of these projects have had to address the magnitude
and complexity of issues raised by the VHF archive.

1Also known as The Survivors of the Shoah Visual History Foundation

The objectives of MALACH and various component technolo-
gies and their interactions are described in [2]. Speech and lan-
guage technologies are the main sources of information for cata-
loging this archive. ASR is the basis of all text processing steps.
The output of the recognizer, annotated with confidence scores,
boundaries, emotion, etc., will be used for subsequent classifica-
tion into concepts. In this paper, we will only discuss the ASR
components of MALACH in English. Issues related to the compo-
nents of MALACH in Czech are addressed in [8].

The rest of the paper is organized as follows. Section 2 de-
scribes the generation of English training and test corpora from
VHF’s archive and their characteristics. Section 3 begins with an
overview of IBM’s speech recognition system and discusses a set
of techniques for the construction of acoustic and language models
for this corpus. Speech recognition results are reported in Section
4. The paper concludes with a summary and a discussion on future
directions of research.

2. CREATION OF THE ENGLISH CORPUS

2.1. Data Description

The Shoah Foundation was created to record the firsthand ac-
counts of Holocaust survivors, liberators, rescuers and witnesses
and disseminate that information to future generations [2]. Ap-
proximately 25000 of the collected testimonies are in English and
575 are in Czech. The average duration of each interview is 2.5
hours. The entire collection amounts to 180 terabytes of digital
video (MPEG1). A parallel paper describes the efforts in building
automated Czech transcription systems [8]. Table 2.1 illustrates
the spontaneous nature of the speech in this corpus with an exam-
ple of the actual words spoken during the course of an interview.

2.2. Training and Test Corpora

The English corpus was generated using 15-minute segments of
an interview from 800 randomly selected speakers. Thus, a to-
tal of 200 hours of data was selected for manual transcription that
would subsequently serve as training material for ASR systems.
The male and female speakers in this corpus were more or less
equally distributed and covered a wide range of accents, namely,
Hungarian, Italian, Yiddish, German, Polish, etc. It should be
mentioned here that this is truly the only corpus of its kind filled
with unconstrained natural speech from a wide-variety of accents.
In this paper, we report all results on ASR systems with acoustic
models constructed using 65 hours from the 200 hour corpus and
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It wasn’t everybody living in one in one one ghetto you know was a little like the in this street a was a house
ghetto in this street it had ghetto but people couldn’t people wasn’t allowed to go out in the streets when they came in the
Nazis came in he wanted they made a Jewish committee the Jewish committee have to help him take where to live ...

Table 1. Example of the spontaneous nature of the speech in the MALACH corpus
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Fig. 1. SNR computed over the training data
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Fig. 2. Manual Transcription Times for 15 minute segments

language models constructed using both, 65 hours and the entire
200 hours of the corpus. At the time this work was performed, all
200 hours had not yet been transcribed. Therefore, we commenced
the development of speech recognition systems of this task with 65
hours of training material. The test corpus consists of 30-minute
segments of interviews from 30 randomly selected speakers. The
results presented throughout this paper are on an hour of data from
20 speakers, selected from this test corpus, unless stated otherwise.

The data was recorded under a wide variety of conditions rang-
ing from quiet to noisy conditions such as, airplane noise, wind
noise, background conversations, highway noise, etc. Human tran-
scribers needed about 8 to 12 hours to transcribe an hour of speech
using “Transcriber”, as the transcription tool [9]. The difficulty
lies in understanding the unfamiliar names, places, multiple lan-
guages encountered during a single interview, coarticulations re-
lated to age, and heavily accented speech. A distribution of tran-
scription times for 15 minutes of an interview is presented in Fig-
ure 2. These times are slightly worse than what has been reported
in the past for transcribing spontaneous speech [10], illustrating
the difficult speech seen here. Table 2 provides more details on the
number of names, places and foreign words seen in this corpus.
The average speaking rate of the interviewees is 146 words/minute
with a dynamic range of 100 to 200 words/minute. The average
speaking rate in the SWB corpus is 100 words/minute [10].

Hours Names and Places (%) Foreign Words (%)
65 7.2 4.1
200 10.6 5.3

Table 2. Distribution of Names, Places and Foreign Words

3. ASR SYSTEM OVERVIEW

This section briefly describes the IBM large-vocabulary speech
recognition system. The various aspects of this system were de-
tailed earlier in [3]. IBM LVCSR systems use context-dependent
sub-phone classes and phonetic baseforms. Words are represented
as a sequence of phones and each phone is modeled with a 3-state
left-to-right HMM. Each of the states roughly correspond to the
beginning, middle and end of each phone. A decision tree is con-
structed for every sub-phonetic unit that corresponds to a state of
the three state HMM [3] by querying the surrounding phonetic
context. The feature vectors used to parameterize the speech sig-
nal are produced at a 10ms frame rate from 16-bit PCM sampled
at either 16KHz or 8KHz. The feature vectors at each terminal
node (leaf) are modeled using a Gaussian mixture density with
each Gaussian having a diagonal covariance matrix. Output distri-
butions on the state transitions are expressed in terms of the rank
of the leaves. The systems used in this paper have approximately
3000 leaves and anywhere between 50000 and 300,000 Gaussian
distributions. A simple N-gram language model is used to com-
pute the language model probabilities. The decoder is a single-pass
decoder which employs the rank-based decoding strategy and the
envelope search algorithm [3] to hypothesize a sequence of words
corresponding to the utterance.

4. ACOUSTIC MODELING

4.1. Feature extraction

This section describes the construction of the acoustic models
for this task. The video interviews were obtained from VHF in
MPEG1 format. The compressed audio signal in MP3 format was
stored at a sampling frequency of 44.1KHz. This signal was ex-
tracted from the video and down-sampled to 16KHz or 8 KHz in
accordance with the recognizer that was used. The original record-
ings were done in stereo with the interviewer and interviewee in
separate channels. However, very often, the microphones were
placed such that they recorded both the speakers with equal inten-
sity or the interviewee was recorded louder than the interviewer
in one channel and vice versa. Also, on many occasions, both the
interviewer and interviewee were connected to the same channel,
or the interview was conducted using a far field microphone with
a noisy background, as reflected by the SNR distribution given in
Figure 1. It can be seen that a significant fraction of the data is
noisy with an energy level below 10 db. The channel in which the
interviewee’s speech was the loudest was selected for subsequent
processing. While it is important to transcribe the interviewer’s
questions equally well, we decided to use the channel in which the
interviewee was the loudest as the bulk of the data is from the inter-
viewee. In the future, we plan to explore algorithms that will use
information from both channels to select the channel that produces
the best word error rate for each of the two speakers.

The 16-bit down-sampled PCM signal was used to produced
24-dimensional mel frequency cepstral coefficients (MFCC). The
MFCC features were computed from a 24-filter Mel filterbank
spanning the 0 Hz - 4.0 kHz frequency range for th 8KHz sys-
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tem and 0Hz - 8.0 kHz for the 16KHz system. All feature sets
use 25-ms. frames with a 10-ms. step, perform spectral flooring
by adding the equivalent of one bit of additive noise to the power
spectra prior to Mel binning, and use periodogram averaging to
smooth the power spectra. Every 9 consecutive cepstral frames
are spliced together and projected down to 60 dimensions using
a linear discriminant feature space transformation to ensure maxi-
mum phonetic discriminability. The range of these transformations
is further diagonalized by means of a maximum likelihood linear
transform (MLLT) to decorrelate dimensions.

4.2. Acoustic Segmentation

The data obtained from each interview was organized in 30-minute
interview segments. In the process of transcription, the tran-
scribers also annotated the corpus with speaker turns and organized
the corpora into smaller segments. Although, this was done to
make the transcription of this difficult speech easier, these turned
out to be very useful segments for bootstrapping initial acoustic
models and subsequently for exploring various automatic acoustic
segmentation algorithms. Throughout this paper we report word
error rates on acoustic models constructed using the manual seg-
mentations.

4.3. Acoustic Models

The first step in the construction of acoustic models is the construc-
tion of the decision trees to model context-dependent variations of
this speech. The trees are built from Viterbi alignments of the
speech signal in the training data with the manual transcriptions at
the context-dependent state level. The initial transcriptions that we
used had a fair number of transcription errors. Many of these er-
rors were due to the good number of foreign words, names, places
and sequences of words uttered in a foreign language (such as,
German, Yiddish or Hebrew) that the transcriber was unfamiliar
with. The percentage distribution of foreign words and names in
this corpus is given in Table 2. The clean-up of these transcriptions
was aided by the use of a thesaurus obtained from VHF that con-
tained frequently used names and place names and a pre-interview
questionnaire. Many of these place names constitute cities, streets
and names of concentration camps. This presents one of the main
difficulties of this database.

The second major difficulty arose from the nature of the
speech itself. This corpus consists of elderly speech, where the
interviewee’s age ranges from 56 years to 90 years. The heavy
accents, noisy backgrounds that include airplane, road, construc-
tion and wind noise, and background conversations combined with
poor articulations of phonetic sounds make it difficult for even hu-
man transcribers to understand the audio correctly. In order to
obtain initial alignments, the average log-likelihood of each seg-
ment in the training data conditioned on the alignments was used
to reject the segments that had transcription errors and or incor-
rect pronunciations in the lexicon. Pronunciations for the many
unseen words in this corpus were derived with the help of exist-
ing dictionaries and tools using spelling-to-sound rules. The data
at the leaves of the decision were modeled with Gaussian distri-
butions via a BIC-based procedure [6] and trained using multiple
iterations of the EM algorithm.

In addition to the speaker independent models, we also built
speaker adaptive models on this corpus (SAT). The training was
done via a feature space maximum likelihood linear transforms,

LM Corpora Perplexity WER (%)
SWB + BN (LM0) 180 57.3
65 hours of MALACH
interpolated with SWB and BN (LM1) 95.1 54.1
200 hours of MALACH 86.9 53.3
200 hours of MALACH
interpolated with SWB and BN (LM2) 72.3 53.1

Table 3. Perplexity and Word Error Rates for various Language
Models

i.e. fMLLR, for each training speaker. The canonical model was
first initialized as the speaker independent model. After fMLLR
transforms for training speakers were computed against the canon-
ical model, the canonical model was then re-estimated using the
affinely transformed features. This method is based on the SAT
[11] principle, but differs slightly from SAT in that the normal-
ization is applied to the features. This corresponds to using a
constrained maximum-likelihood linear regressing (MLLR) [12]
transform instead of a mean-only MLLR transform.

4.4. Language Modeling

Two language models were trained on both ��� hours and ����� hours
of data from this corpus. The technique that was used to compute
and smooth the n-gram counts was the modified Kneser-Ney algo-
rithm [13]. A challenge in language model training and lexicon de-
sign for this corpus was that a large portion of personal names and
places were not covered by this data. To enhance these language
models, data from the Switchboard and Broadcast News corpora
were added and interpolated with the data from the MALACH cor-
pus. The interpolated weights were optimized to achieve minimum
perplexity on the held-out data from the MALACH corpus. The ef-
fect of an increase in the in-domain material and the interpolation
across other speaking styles such as those seen in Broadcast News
(BN) and Switchboard (SWB) tasks are illustrated in the Table 3.
The 65-hour and 200-hour MALACH corpora contain about 320K
and 1.7M words respectively. The BN and SWB corpora contain
158M and 3.4M words respectively. The decoding lexicon consists
of 30K words. The average OOV rate on the test set ranges from
3.2% to 11.6% with an average OOV rate of 8.2%. The percentage
of trigram counts used from the SWB and BN corpora decreased
from 66% to 26% with the addition of more in-domain data from
the MALACH corpus.

5. RECOGNITION RESULTS

This section presents the first set of recognition results on the En-
glish portion of the MALACH corpus. A baseline word error rate
was first computed using a speaker independent, MFCC system,
which served as the very first baseline system for the SWB task
[6]. This system comprising of 300K diagonal Gaussians and a
lexicon of 64K words was trained on the Switchboard, CallHome,
CTIMIT, and the National Cellular Corpora and has an error rate of
47.3% on the spontaneous conversations in the Switchboard 1998
Evaluation task. However, the speaker independent performance
of this system was as high as 85.6% on this test data (Table 4)
compared to the baseline system trained on in-domain data. It is
interesting to note that even though both corpora are recorded con-
versations between two individuals, the drastic differences in the
nature of the speech coupled with the high OOV rate results in
poor speech recognition performance.
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System I System II
(8 Khz) (16 Khz)

SWB system + LM0 85.6 NA
Baseline on Malach + LM0 57.3 54.3
Baseline + Malach LM1 54.15 51.3
SAT + LM1 (A) 49.5 46.8
(A) + MLLR – 45.4
(A) + MLLR +LM2 46.1 43.8

Table 4. Word error rates using two different systems

It can be seen from Table 3 that both, increasing the in-domain
data as well as incorporating data from other corpora produces a
reduction in perplexity and the overall word error rates. A gain
of 4% absolute can be obtained when the in-domain is tripled and
augmented with similar data from other related corpora. Table 4
presents the speech recognition results on this new task. The two
systems were built by down-sampling the original signal to 8KHz
(System I) and 16KHz (System II). While both systems are com-
parable in performance, the wider bandwidth system has a relative
6% performance improvement over the bandlimited system.

The speaker-independent system built on 65 hours of
MALACH data produces a word error rate of 57.3% on this task.
This reiterates prior work in the literature that significant improve-
ments, such as halving the word error rate can be obtained when
the acoustic models are trained using in-domain data. When this
system is augmented with a language model that has been trained
on the MALACH corpus, further improvements can be seen. The
SAT models reduce the error rate further to 46.8 %. Subsequent
adaptation using MLLR and an improved language model results
in a word error rate of 43.8%.

6. SUMMARY AND ANALYSIS

As demonstrated in Section 4, training ASR systems with in-
domain data and conventional adaptation techniques improve the
performance significantly, bringing the word error rate down to
43.8%. This high word error rate, despite matched training and
test conditions, illustrates the difficult and diverse nature of the
VHF corpus. In this section, we will analyze the many factors that
contribute to the degradation in performance.

In order to isolate the errors made by the acoustic and lan-
guage models, an experiment was conducted, wherein, two native
speakers were asked to read an hour of transcripts from the test
set. The word error rate from an ASR system trained on broadcast
news data (without any MALACH data in the acoustic or language
models) on this task was 11.89%, clearly implying that most of
the errors made by the ASR systems could be attributed to the
acoustic models. OOVs were a major source of errors, introducing
many insertion and substitution errors. The disfluencies present in
this spontaneous speech pose significant challenges for the recog-
nizers as well. There are sections of frequent interruptions by the
interviewer, sometimes to assist the interviewee along, and these
rapid speaker changes and cross talk pose problems for manual
and automatic segmentation methods. There are also sections of
with emotional, low-volume and whispered speech. All of these
contribute to the overall word error rate.

7. RESEARCH ISSUES AND FUTURE WORK

Despite the considerable progress made in recent years in speech
recognition, current technologies are sensitive to the acoustic and

channel properties of the data, speaker variability and to mis-
matches between the training and real usage conditions, as can
be seen from Section 4. Due to the nature of the material, a signif-
icant percentage of this corpus is comprised of highly emotional
and sometimes whispered speech. Hence, modeling the disfluent,
emotional and whispered speech from elders is crucial. Back-
ground noise and frequent interruptions pose problems for adap-
tation to the interviewee’s speaking style. Very often, the speakers
switch naturally to their native language or the languages they are
used to, especially when describing cultural events and these un-
cued switches pose challenges to ASR systems. All the speakers
in the corpus are non-native speakers with dialects from all over
the world and hence pronunciations that capture heavily-accented
speech need to be derived. OOVs (names, places, events) pose se-
rious problems as well. The huge quantities of audio data renders
this corpus useful for studies on the effect of the size of the adap-
tation data on the word error rate and optimal selection of data for
training and adaptation. These are some of the issues that will be
addressed in subsequent years, while efforts will be spent to reduce
the overall error rates on this task using well-known techniques
such as VTLN and MMI that we have not currently explored.
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